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The brain plays a crucial role in life-sustaining activities of human, including consciousness, 

logical thinking, emotional feeling, memory storage, somatic movement, and communication. As 

the most complex but least understood organ, brain has attracted rising efforts in science and 

technology to reveal its functions and mechanisms. However, unlike many other organs, the energy 

consumption of brain is extremely high, accounting for ~20% of entire metabolism in the living 

body, well above its weight fraction of ~2% [1]. Moreover, brain has no relevant energy storage 

capacity, which makes it strongly relies on the continuous supply of oxygen and glucose by 
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cerebral blood flow [2], as metabolism of glucose is the only source of energy for brain except 

after prolonged starvation [3]. Therefore, one of the most promising area in brain research is 

through the cerebral blood supply that fuels the cerebral cell metabolism, i.e. the investigation of 

the cerebrovascular system. 

Optical coherence tomography (OCT) based angiography has developed as one of the most 

powerful and invaluable tool for fast volumetric imaging of cerebral vasculature in vivo [4]–[9]. 

As one of the earliest proposed OCT angiography techniques, optical microangiography (OMAG) 

demonstrates high potential in detecting OCT signal variations caused by moving red blood cells 

down to individual capillaries. To further resolve the quantitative flow information (e.g. the blood 

flow speed), an OCTA-based velocimetry technique was recently proposed to quantify the 

capillary blood flow within mouse cerebral cortex [10], and accordingly analyze the cortical 

capillary transit parameters [11]. The background knowledge of OCT angiography and OCT 

velocimetry are introduced in chapter 1 of this thesis. 

One popular paradigm for understanding the brain energy budget is through neurovascular 

coupling, which correlates the spatiotemporally varying cerebral blood flow with the metabolic 

needs evoked by local neuronal activities [12][13]. Nowadays, neurovascular coupling and 

associated hemodynamic responses have been one of the hottest topic in neuroscience. Taking 

advantage of the high spatial and temporal resolutions of the  OCT velocimetry technique 

(introduced in chapter 1), the capillary hemodynamics within mouse cerebral cortex, as a key factor 

in the cerebral oxygen diffusion [14]–[16], is thoroughly investigated and discussed in chapter 2. 

This chapter describes a couple of new findings about the microvasculature and capillary 

hemodynamics in neurovascular coupling, including the mean capillary transit velocity, temporal 

fluctuation bandwidth, and variations of such during electrical stimulation, along with a Monte 
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Carlo numerical model to simulate the spatiotemporally-coupled capillary transit parameters, 

allowing for better understanding of the neurovascular coupling and functional hyperemia. 

Apart from the capillaries, the penetrating vessels, which bridge the subsurface microvascular 

bed with the mesh of surface communicating vessels, are usually lack of characterization. 

Moreover, in contrast to the surface and subsurface vasculatures, the penetrating vessels are highly 

devoid of anastomoses [17], [18], which makes them the anatomical bottleneck in cerebral blood 

supply [19], [20]. Clinically, the degeneration and dysfunction of penetrating vessels appear to be 

direct related to Alzheimer’s disease, cerebral amyloid angiopathy, perceptual deficit, and stroke. 

In chapter 3, we propose a statistical cerebral penetrating vessel mapping approach that is 

innovatively redesigned from OCT velocimetry. This method allows for automatic quantification 

of penetrating arterioles and ascending venules from large volume OCT angiography data, and 

accordingly contributes to the topological and morphological analyses of cortical vasculature in 

functioning brains. 

 As the “main street” of the cerebral vascular architecture, the surface communicating vessels 

play a leading role in the cortical tissue development in both normal and pathological conditions. 

For instance, the redundancy in cortical surface vessels supports persistent cerebral blood flow 

[21], and the anastomosis of surface vessels in stroke further protects cortical tissue from ischemic 

injury [22]. On the other hand, the functioning of the surface communicating vessels is highly 

related to their morphological properties, including vessel diameter, vessel torutosity, vessel 

branching angle et. al. In chapter 4, we present a comprehensive framework for quantitative 

characterization of the cortical surface vessels, with newly-designed methods for automated vessel 

diameter measurement and vessel tracing. The proposed algorithmic approach is highly adaptable, 
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and can easily be extended to other imaging modalities, making it of great value in multiple clinical 

settings.   

Other than the cerebral blood flow, as a high-sensitive approach to resolve signal variations, 

dynamic OCT processing may provide subtle information of cortical cell dynamics. In the future, 

we plan to image and quantify the subcellular motion of neuron cells in the brain in vivo. Some of 

the preliminary results have been drafted in chapter 6. The successful characterization of cortical 

cell metabolism and cerebral blood flow with OCT may prove its high potential in future studies 

of neurovascular coupling. 
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Chapter 1. Introduction 
 

1.1 Optical coherence tomography 

Optical coherence tomography (OCT) is a rapid evolving imaging modality with tremendous 

technological advances in the last two decades. Analogous to ultrasound, OCT performs fast three-

dimensional imaging of biological tissue samples by measuring echoes of the back-reflected light, 

while the resolution of which is in the range of 1-15 µm, one to two orders of magnitude finer than 

conventional ultrasound [23].  Here, we will introduce the basic principle of OCT, especially the 

spectral domain OCT that commands the largest OCT market share due to its advantages in system 

sensitivity and stability. 

 

1.1.1 Principle of OCT 

OCT is based on low-coherence interferometry that detects the interference between the back-

reflected optical fields. The schematic setup of a typical time domain OCT system (Michelson type 

interferometer) is shown in Fig. 1.1(a), which is consisted of a broad-band light source, a beam 

splitter, a reference arm with a mirror, a sample arm with the tissue of interest, and a photodetector.  

In the system, light emitted from the source is first divided by the beam splitter into the reference 

arm and the sample arm. Reflected light from the reference mirror recombined with the back-

scattered light from different tissue layers, and then detected by the photodetector. The detected 

OCT signal can be expressed by the following equation, 

𝐼 𝑍  𝜌〈|𝐸 𝐸 | 〉 ,     (1.1) 

where ρ is the quantum efficiency; τ is the integration time; Z is the axial position; ER and ES are 

the optical fields of the reference arm and the sample arm, respectively. As the interference can 

only be formed when the optical path length difference between two arms is within the coherence 
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length of the light source, a micrometer-scale axial (depth) resolution can be achieved by adopting 

sources of wide spectral bandwidth. By axially moving the reference mirror, an interferogram 

containing a burst fringe-pattern that corresponds to a depth measurement of the tissue sample (A-

line) is obtained with each depth position matching its corresponding reference path length, as 

shown in Figure 1.1(b). However, due to the mechanical movement of the reference mirror, time 

domain OCT can only reach an A-line rate of ~8 kHz, whose in vivo application is therefore highly 

limited. 

 

 

Figure 1.1. (a) schematic setup of a typical time domain OCT system and (b) a representative A-line signal  
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1.1.2 Spectral domain OCT  

Spectral domain OCT (SD-OCT), which shares a similar concept with the time domain OCT, is 

however capable of extracting the depth-resolved information without any movement of the 

reference mirror. As shown in Figure 1.2 (a), by replacing the photodetector with a high-speed 

spectrometer, the depth measurement is directly recorded as a function of the light wavelength, 

called OCT interference spectrum. In this scenario, equation (1.1) can be rewritten as: 

𝐼 𝜆  𝜌〈|𝐸 | |𝐸 | 2|𝐸 ||𝐸 | ∙ 𝑐𝑜𝑠 2𝑛 𝑍 𝑍 ∙ 𝐾 〉   (1.2) 

where λ is the light wavelength, and K is the wavenumber that equals to 2𝜋/𝜆. According to 

equation (1.2), the optical path length difference and the wavenumber K are Fourier transform 

pairs. Therefore, the A-line signal equivalent to the profile in Figure 1.1(b) can be obtained through 

fast Fourier transform (FFT) of the interference spectrum. The OCT interference spectra of three 

representative tissue layers and the corresponding depth profile are conceptually illustrated in 

Figure 1.2 (b). Finally, either in conventional time domain OCT or in spectral domain OCT, two- 

or three- dimensional (2D/3D) data are generated by laterally scanning the light beam and 

sequentially piling up multiple depth scans into a cross-section (B-frame) or a volume. 
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Figure 1.2. (a) schematic setup of a typical spectral domain OCT system and (b) OCT interference spectra of three 
representative tissue layers and the corresponding depth profile (A-line) 

 

As the speed of SD-OCT is mainly determined by the exposure time of the CCD camera, it can 

provide an A-line rate of 100 – 200 kHz, much faster than that of the time domain system. 

Additionally, assuming the system is shot-noise limited, the camera can be regarded as an array of 

photodetectors with same noise floor (parallel detection). Therefore, in each A-line, the total 
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number of photons collected in SD-OCT is M (number of elements in the detector array) times that 

of the time domain OCT, resulting in a typical sensitivity advantage of 20 – 30 dB for the former 

[24]. As compared to another popular OCT setup, the swept source OCT, that requires continuous 

frequency-tuning in the light source, SD-OCT has a significant advantage in its phase stability due 

to its stable light source, which is extremely important in the quantitative study of cerebral blood 

flow and hemodynamics. Therefore, the entire thesis will be based on the development and usage 

of SD-OCT systems. 

 

1.1.3 Data acquisition in SD-OCT 

The data acquisition in SD-OCT is achieved following several main steps as shown in Figure 1.3. 

Initially, the scanning protocol (including sampling rate, field of view, lateral sample spacing et 

al.) is designed and used as the system control waveform. Then, 2D/3D data are acquired through 

synchronously triggering the galvo scanners, the camera, and the frame grabber. As in SD-OCT 

the interference is split by a grating into different frequency components that are further captured 

by the line-scan camera. Resampling of the captured data (K-space linearization) is required in 

order to correct for the nonlinear spatial mapping of wavenumbers. A well-accepted method for 

K-space linearization usually involves estimating the phase-frequency relation via Hilbert 

transformation, calculation of instantaneous phase angle and phase unwrapping [25]. After 

subtraction of the background and K-space linearization, the depth profile of the structural 

information can be reconstructed by performing FFT operation with respect to each A-line. 
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Figure 1.3. SD-OCT data acquisition flow. Right top: scanning protocol; Right middle: a representative background-
subtracted interference spectrum; Right bottom: FFT of the representative spectrum (blue), FFT of the 

representative spectrum after K-space linearization (orange) 
 

1.2 Optical coherence tomography angiography (OCTA) 

As a functional extension of OCT technique, OCT-based angiography has been increasingly 

becoming clinically important due to its ability to provide volumetric microvascular networks in 

vivo without a need of exogenous contrast dyes. Based on repeated scanning (repeated A-lines, B-

frames or 3D volumes) and high-pass filtering, numerous OCTA algorithms have been proposed 

to contrast functional microvasculature in the brain, such as optical micro-angiography (OMAG) 

[6], [26], speckle variance [27], phase variance [28], and correlation mapping [29]. By using 
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ultrahigh sensitive OMAG (UHS-OMAG), an unprecedented sensitivity to 4 μm/s was achieved 

[30]. As with high tolerance to bulk tissue motion (i.e. with no need of phase compensation for 

bulk motion [31]), a complex OCT signal based eigen-decomposition (ED) clutter filtering 

algorithm was proposed to effectively suppress the static tissue structure while preserving the flow 

information [32]. 

For 3D data acquired by SD-OCT, the temporal resolution of OCTA depends on the camera 

speed that defines the system A-scan rate, and scanners that dictate how fast the probe beam can 

be scanned to achieve 3D imaging. On the other hand, the sensitivity of OCT angiography 

techniques to blood flow measurement is directly related to the time interval Δt for analysis. The 

shorter Δt translates to a lower sensitivity of flow measurement. In practice, one often selects to 

use Δt in a range ~2 to 5 ms for angiographic data analysis to contrast slow blood flows, e.g. in 

capillary vessels, within tissue in vivo [33].  

 

1.3 Optical coherence tomography velocimetry (OCTV) 

Based on the ED-OCTA technique, a model-based ED-OCTV was proposed to statistically 

estimate  the mean capillary flow velocity (proportional to the mean frequency of the power 

spectrum of the dynamic blood flow) and the temporal flow fluctuation (proportional to the 

bandwidth of the power spectrum) from the coherent optical signals.  

The frequency analyses were firstly conducted using the covariance matrix 𝑅  of grouped A-

line OCT signals expressed as 

𝑅 𝐸𝑥𝑝𝑒𝑐𝑡 𝑥𝑥∗      (1.3) 

where 𝑥 𝑥 1 , 𝑥 2 , … 𝑥 𝑁  is the repeated complex A-lines with N represents the total 

number of repeats and T represents the matrix transpose, Expect{} is an operation to calculate 



www.manaraa.com

8 
 

expectation; 𝑥∗ represents the complex conjugate of 𝑥. According to discrete Karhunen-Loeve 

transform (DKLT), the correlation/covariance matrix of 𝑥 can be decomposed as eigen values 

𝜆  and eigen vectors 𝑒  that represent different frequency components, as expressed by 

𝑅 𝐸𝛬𝐸∗ , with 𝛬

𝜆 0 ⋯ 0
0 𝜆 ⋯ 0
⋮ ⋱ ⋯ ⋮
0 0 ⋯ 𝜆

 𝐸

⎣
⎢
⎢
⎡

𝑒 1 𝑒 1 ⋯ 𝑒 𝑁
𝑒 2 𝑒 2 ⋯ 𝑒 𝑁

⋮ ⋱ ⋯ ⋮
𝑒 𝑁 𝑒 𝑁 ⋯ 𝑒 𝑁 ⎦

⎥
⎥
⎤
 (1.4) 

where 𝛬 is the diagonal eigen value matrix, E is the eigen vector matrix, and ND is the number of 

repeated A-lines. On the other hand, the DKLT can be considered as a generalization of 

conventional Fourier analysis for nonstationary random processes [10]. Therefore, with the static 

component removed through clutter filtering [34], the power spectrum of the signal (i.e. Fourier 

transform of the correlation function according to Wiener-Khinchin theorem) can be calculated by 

the eigen decomposition of the correlation/covariance matrix. The spectral moments 𝜔k are 

calculated through first lag-one autocorrelation of the remaining eigenvectors as 

𝜔 / arg ∑ 𝑒∗ 𝑚 𝑒 𝑚 1     (1.4) 

where FPS denotes the sampling frequency, arg{} is calculation of the phase angle, ek (m+1) and 

ek
*(m) are the kth eigenvector from the (m+1)th A-line and the complex conjugate of the kth 

eigenvector from the mth A-line. The mean frequency that is related to the mean capillary flow 

velocity is calculated by a weighted normalization as: 

𝜔  ,      (1.5) 

where G(𝜔k) is the power of corresponding spectrum component. The linear relationship between 

the measured mean frequency and the mean velocity in individual capillaries have been proved by 

the quantitative results of designed microfluidic flow channels [10]. Moreover, the bandwidth of 

the frequency that is related to the temporal flow fluctuation of transit RBCs can be expressed as: 
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∆𝜔  .    (1.6) 

Feasibility of these two parameters (𝜔 and ∆𝜔) in quantification of cerebral capillary flow have 

also been demonstrated in [10]. 

 

1.4 Scope of the thesis 

The objective of my research is seeking OCT solutions for characterizing the cerebral vasculature 

and hemodynamics, and understanding how the cerebral circulation adapts in different 

physiological states. The solutions include but not limited to the quantification of blood flow 

parameters, the numerical modeling of capillary hemodynamics, the statistical analysis of vascular 

patterns, controlled phantom validations, and the OCTA associated artifact reduction and system 

development. Specific objectives are achieved through the following aims: 

Aim 1: Characterize the cerebral microvascular network and capillary hemodynamics by 1) 

applying OCTA and OCTV to the microcirculatory tissue bed; 2) quantitatively analyzing the 

hemodynamic parameters and their correlations; 3) establishing a Monte Carlo simulation model 

based on the experimental findings; 4) resolving the spatiotemporally-coupled hemodynamics 

through the control of individual parameters in the simulation model. 

Aim 2: Characterize the cerebral penetrating vessel network by 1) developing an innovative 

penetrating vessel mapping (PVM) approach that eliminates the artifacts in the prior art; 2) 

integrating the PVM with multiple OCT techniques for comprehensive cerebral diagnosis; 3) 

applying the developed algorithm to investigate the vasculature remodeling and penetrating vessel 

adaption after ischemic stroke.  

Aim 3: Characterize the cerebral surface vasculature by 1) developing an automatic vessel 

diameter quantification method that overcomes the drawbacks in current clinically-used approach; 
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2) developing a modified A* path searching algorithm to trace vessel branches, and accordingly 

evaluating averaged vessel diameter, vessel tortuosity and bifurcation angle; 3) validating the 

proposed methods with well-characterized microfluidic flow phantoms; 4) applying the proposed 

methods to investigate the morphological properties of cortical surface vessels in vivo. 5) 

integrating all the proposed methods into a comprehensive graphic user interface (GUI) platform 

for OCT angiography vasculature analysis. 
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Chapter 2. Quantitative investigation of cerebral capillary hemodynamics 
with OCT velocimetry 

 

In this chapter, the topic of interest is the cerebral capillary blood flow. I will first introduce the 

basic parameters of capillary hemodynamics and how their changes affect the capillary oxygen 

extraction during functional hyperemia. By taking the advantages of high temporal resolution of 

OCT velocimetry discussed in chapter 1 section 1.3, I further investigate the mean RBC velocity 

and temporal RBC fluctuation, as well as variations within such in the cerebral cortex. In the 

investigation, statistical correlation analysis and newly designed Monte Carlo simulations (based 

on the experimental results) are adopted that provides a thorough and quantitative representation 

of capillary transit characteristics. Although the entire demonstration is on healthy mouse cortex, 

the proposed quantitively methods can be applied to investigate the hemodynamic responses in 

cerebral pathological conditions such as stroke and Alzheimer's diseases. 

 

2.1 Introduction 

The interwoven nature of capillary network supports crucial functions in tissue metabolism 

through the exchange of oxygen, substrates, and metabolites with proximal cells. Such 

functionality can be observed in the brain, when a localized increase in blood perfusion is provoked 

during neural activation to serve the demands of glycolytic metabolism and oxygen consumption 

via a complex process termed neurovascular coupling [35]. This interactive hemodynamic 

response is generally summarized as functional hyperemia, with some controversy surrounding its 

origin; that is, whether it is regulated through arterioles and downstream capillaries [36], [37] or 

directly controlled by pericytes [38], [39]. In either case, the increase in cerebral blood flow (CBF) 

exceeds that of oxygen consumption, meaning the tissue oxygen extraction fraction (OEF) is 
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decreased whilst CBF increases [40]–[42]. As net oxygen consumption is proportional to the 

product of OEF and CBF, the reduction in OEF would work to counteract the effects of augmented 

CBF, suggesting that other factors may be responsible for the metabolic benefits of hyperemia. 

Moreover, recent report indicated that during activation brain metabolism proceeds even without 

the increase of CBF, confirming that the metabolism of activated neurons should be attributed to 

a compensation mechanism in OEF [43]. One explanation suggests that recruitment of previously 

quiescent capillaries [44] increases the available surface area for oxygen diffusion and 

consequently reduces oxygen diffusion distance [45], [46]. However, increasing microscopic 

evidence reveals no capillary recruitment during functional hyperemia, especially in the cerebral 

cortex [47]–[51]. An alternative theory is established by Jepersen and Østergaard, which describes 

the relationship between net oxygen extraction, i.e. the product of OEF and CBF, with the use of 

capillary transit time heterogeneity (CTTH) [14]. In this theory, capillary transit time 

homogenization, i.e. decreased CTTH, is proposed as a vital mechanism to compensate inherent 

OEF reduction stemming from augmented CBF and to ensure sufficient capillary oxygen 

extraction during episodes of hyperemia.  

To validate the process of capillary transit time homogenization, a two-photon microscopy-

based bolus tracking technique was adopted to quantify changes in the plasma mean transit time 

and the CTTH during forepaw stimulation [52]. Whilst the premise of the study was positive, the 

imaging was directly applied to plasma rather than RBC), inevitably introducing measurement 

flaws [53]. Furthermore, the limited numbers of capillaries that can be imaged with two-photon 

microscopy and the long acquisition time required to sample multiple capillary segments, hinder 

the simultaneous investigations of both spatial hemodynamic distributions and temporal 
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hemodynamic fluctuations. Solving this problem requires a more powerful tool capable of imaging 

large ensembles of capillaries with high spatiotemporal resolution within a short period of time. 

In recent years, the benefits of RBC flux and speed measurements were demonstrated using 

OCT over a large field of microcirculatory bed [54]–[58], thus giving an opportunity to 

characterize hemodynamic response for the first time in a more quantitative manner [56]. Li et al. 

investigated the RBC flux at the baseline and during hypercapnia [59], and characterized RBC flux 

homogenization as the increase of lower end values while upper limit is kept constant. Moreover, 

RBC flux variability was shown to be proportionate to absolute mean flux. While promising, 

several concerns have not been fully addressed. 1) The reported relative flux change, whereas 

indicating the level of variation normalized to baseline flux, could not be directly used to 

characterize the capillary transit performance because transit heterogeneity is quantified based on 

the absolute transit time/velocity/flux. 2) The temporal resolution of 667 Hz that was used in the 

study is not fast enough for mapping temporal fluctuations against flux with the inter-B-frame 

scanning protocol. 3) The contributions from temporal RBC fluctuations to the OEF, other than 

those owing to selective flow acceleration, is uncovered. 

Here, by taking the advantages of the high temporal resolution (20 kHz) of OCT velocimetry, 

designed with eigen-decomposition (ED) statistical analysis [10], we investigate temporal RBC 

fluctuation within mouse cerebral cortex, representing them as temporal fluctuation bandwidths 

(TFB) of RBC flow velocities. The bandwidth before and during hind-paw electrical stimulations 

are analyzed to resolve alterations in capillary flow patterns. The results extend our current 

understanding of spatial and temporal hemodynamics through presenting: 1) during electrical 

stimulation, both mean capillary transit velocity (mCTV) and temporal RBC fluctuation (i.e. TFB) 

increase; 2) the degrees of augmentation in mCTV and TFB both negatively correlate with resting 
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mCTV, with TFB also negatively correlating with resting TFB. Furthermore, a spatiotemporal-

coupled Monte Carlo model is constructed to simulate the hemodynamic behavior and the 

changing processes of CTTH during neural activation, highlighting the increase of mCTV and 

TFB as the driving force. Our results indicate that the heterogeneous acceleration of flow speed 

and the heterogeneous increase of temporal fluctuation synergistically diminish the spatial CTTH; 

therefore, ensuring sufficient oxygenation during functional hyperemia. 

 

2.2 Materials and Methods 

2.2.1 Phase stable OCT system and imaging protocol 

To acquire the complex OCT signals that carry information about mCTV and TFB, a phase 

stabilized spectral domain OCT system was employed [10]. Briefly, the system comprised a super 

luminescent diode with a central wavelength of 1340 nm and a bandwidth of 110 nm, which 

provided an axial resolution of ~7 μm. For resolving microscale tissue features, a 10X objective 

lens was adopted in the sample arm that provided a lateral resolution of 7 × 7 μm, the full width at 

half maximum (FWHM). The angiographic image was acquired using an ultrahigh sensitive 

OMAG protocol [60], which consisted of 400 A-lines along the fast axis (X) at 92,000 A-lines/sec, 

and 3,200 B-frames along the slow axis (Y) at 180 frames/sec with 8 repeated cross-sectional scans 

per location, covering a field of view of 3.5 × 3.5 mm.  With capillary velocimetry, for balancing 

the trade-off between temporal sensitivity and temporal resolution [6], [57], the acquisition speed 

was set to 20,000 A-lines/sec, and 50 repeated A-lines were acquired at each of the pre-assigned 

200 × 100 lateral positions, covering a field of view of 1.5 × 0.75 mm (X × Y). 
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Figure 2.1.  Temporal fluctuation bandwidth (TFB) of the capillary blood flow within activated cortical region 
increases during electrical stimulation. (a) Schematic diagram of imaging during electrical stimulation. (b) A 
representative 3.5 × 3.5 mm en face vascular image, showing a responsive somatosensory cortex region (HSC) and a 
non-responsive control region (CTRL), in white boxes respectively. The image is generated by projecting the vessels 
onto x-y plane from 0 mm to 300 um in depth from the cortical surface. (c) and (d), the velocimetry maps of TFB 
displaying the temporal heterogeneities before (rest) and during (stimulation) neural activation in HSC and CTRL, 
respectively. (e) and (f), The histogram distributions of TFB from selected regions, with additional blue scatters and 
polynomial fitted curves indicating shifts in bandwidth distributions after stimulation as in (g) and (h), respectively. 
(i) Relative changes in TFB at the HSC and CTRL regions of each animal. The statistical difference reaches a 
significance level of P < 0.01. (j) Relative changes in mCTV at the HSC and CTRL regions of each animal. The 
statistical difference reaches a significance level of P < 0.05. In (i) and (j) each dot represents an individual animal, 
and the horizontal bar represents the mean with standard error. All scale bars represent 500 μm. a.u.: arbitrary unit. 
 

2.2.2 Animal preparation and neural activation 

The animal experiments outlined here were approved and supervised by the IACUC committee 

at the University of Washington. Please refer to [11] for the detailed procedures and protocols for 

animal handling and neural activation. In brief, C57BL/6 mice (n = 9, male, ~2 months, ~25 g) 



www.manaraa.com

16 
 

were prepared via cranial window surgery under isoflurane anesthesia and investigated at resting 

state and during functional activation. As shown in Figure 1(a), the activation was evoked by 

applying an electrical stimulus (repetition rate 3 Hz, amplitude 2 mA, duration 0.3 ms) to the left 

hind-paw of the mouse over a period of 30 sec. Correspondingly, the contralateral hind-paw 

somatosensory cortex (HSC) was imaged through our velocimetry scanning protocol, with an 

additional acquisition procedure being carried out on a control region (CTRL) away from the HSC. 

The detection and justification of these two regions were also detailed in [11] by using laser speckle 

contrast analysis of tissue oxygenations. To avoid potential interference from long-term 

stimulations, a 20-min recovery time was assigned between data-collections at HSC and CTRL 

regions while the animals were kept anesthetized. 

 

2.2.3 Optical micro-angiography and vessel area density 

The delineation of flow signals, i.e., OMAG imaging, was realized through regression filtering 

to remove a number of eigenvalues (first two in this work) that represent the static components 

[32]. This flow signal extraction method can be applied to either the typical angiography datasets 

through inter-B-frame analysis or the velocimetry dataset through inter-A-line analysis. En face 

angiograms were obtained by maximum intensity projection of the morphological flow signals 

onto the X-Y plane. We calculated vessel area density (VAD) [61] based on en face angiograms 

derived from velocimetry datasets. In brief, VAD was calculated as the percentage of area occupied 

by vessels with respect to the entire scanned region (200 × 100 pixels) [61]. For visualization 

purpose, the mapping of VAD was further accomplished by pixel-wise shifting a sampling window 

with 25× 25 pixels, calculating VAD in each window, resizing the calculated map to its original 

size, followed by spatial Gaussian smoothing with a kernel size of 3 × 3 pixels. The window size 
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and the smoothing kernel size were empirically selected to balance the lateral sample spacing and 

the total sample numbers.  

 

2.2.4 Capillary velocimetry analysis 

The inter-A-line capillary velocimetry analysis was achieved by representing a collective of 

OCT signals as eigenvalues and eigenvectors, and evaluating the frequency of moving RBCs 

through first lag-one autocorrelation of corresponding eigenvector pairs, as detailed in chapter 1 

(equations (1.4) – (1.6) are rephrased here for the consistency of this chapter). Briefly speaking, 

the mean frequency is written by a weighted normalization: 

𝜔  ,       (2.1) 

where 𝜔k is the spectral moment derived from the kth eigenvector and G(𝜔k) is the power of 

corresponding spectrum component. The 𝜔k can be derived by lag-one autocorrelation of the 

eigenvector pairs as:  

𝜔 / arg ∑ 𝑒∗ 𝑚 𝑒 𝑚 1     (2.2) 

in which FPS represents the sampling frequency (FPS = 20,000 Hz), arg{} is an operation that 

evaluates the phase angle, ND is the number of repeated A-lines (ND = 50), ek (m+1) and ek
*(m) 

respectively represent the kth eigenvector from (m+1)th A-line and the complex conjugate of kth 

eigenvector from mth A-line. Moreover, the movement of RBCs is a time-varying signal. The 

bandwidth of the power spectrum that is related to the temporal heterogeneity of transit RBCs can 

be expressed as: 

∆𝜔  .    (2.3) 
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On the ground of Brier’s reconciliation theory that dynamic speckle signal is equivalent to laser 

Doppler [62], the mCTV �̅�  and the TFB 𝜎  are directly proportional to the mean frequency of 

the dynamic OCT signal (𝜔) and its power spectral bandwidth (∆𝜔), respectively: 

�̅� 𝜌𝜔 ,      (2.4) 

𝜎 𝜌∆𝜔 ,         (2.5) 

in which the scale factor 𝜌 is empirically selected as 0.002 mm according to a phantom experiment 

[10]. Variations or changes in mCTV and TFB are calculated by subtracting resting state 

parameters from those of the stimulated, and the relative changes are obtained by further 

normalizing variations against the resting parameters. 

 

2.2.5 Spatial distribution of capillary transit time 

Here we adopt the theory in previous modeling study [14] to parameterize the probability 

density function of the spatial capillary transit time distribution, expressed as: 

𝑓 𝑡̅
Г

𝑡̅ 𝑒 ,     (2.6) 

where Г 𝑎  represents a complete gamma function; a and b represent the shape parameter and the 

scale parameter, respectively. Then, the averaged capillary transit time is determined as 𝑎𝑏, and 

the CTTH (i.e. the heterogeneity of transit times among multiple capillary paths) is quantified by 

the standard deviation  √𝑎𝑏 [14], [52].  

 

2.3 Experimental findings 
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2.3.1 Temporal fluctuation bandwidth increases during electrical stimulation 

OMAG imaging was first performed to visualize the 3D cerebral vascular networks within cortex 

for each animal at resting state. A representative vascular OMAG map is shown in Figure 1(b) that 

was depth-color coded to 300 μm below the cortical surface, where the responsive region (HSC) 

and non-responsive control region (CTRL) to the hind-paw stimulation are highlighted by white 

boxes for comparative purposes. Then, the animal was subjected to the electrical stimulation 

protocol.  TFB of the HSC and CTRL at resting state and under stimulation are respectively 

mapped in Figs. 1(c) and 1(d). Figs. 1(e) and 1(f) display the histogram distributions of TFBs, with 

relative changes displayed as hollow scatters in Figure 1(g) and 1(h), respectively. A reduction in 

lower TFB counts (TFB < 0.5 mm/s) and an increase in higher TFB counts (TFB > 0.5 mm/s) are 

visualized in the HSC region, whereas the trend in the CTRL region remains almost constant. 

Figure 2.1(i) summarizes relative changes in temporal bandwidth at both the specified regions. 

Taken together, there is an average of 6% increase in TFB at the HSC region (0.72 to 0.77 mm/s) 

through the electrical stimulation, whereas no increase (0.72 to 0.73 mm/s) was seen at the CTRL 

region. Statistical analysis (paired T-test) shows a significant difference between the HSC region 

and the CTRL region (P < 0.01). A similar significant difference (P < 0.05) was observed for the 

mCTV as displayed in Figure 2.1(j), in which an average increase of 7.7% (1.30 to 1.40 mm/s) 

was obtained at the HSC region compared with a negligible change of 1.33 to 1.35 mm/s at the 

CTRL region. 
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Figure 2.2. Electrical stimulation does not involve the capillary recruitment. (a) and (b) Representative vessel density 
maps, corresponding to Figure 1 (c) and (d), showing no visible capillary recruitment in either HSC or CTRL regions. 
(c) Statistical analysis of vessel density comparing resting and stimulated states in the HSC regions of each animal (p 
= 0.15). (d) Statistical analysis of relative changes in vessel density for inter-region comparisons between the HSC 
and CTRL regions of each animal (p = 0.45). In (a) and (b), the colorbar represents the quantified vessel area densities. 
In (c) and (d), each dot represents an individual animal, and the horizontal bar represents the mean with standard error. 
All scale bars represent 500 μm. a.u.: arbitrary unit. 
 

2.3.2 Electrical stimulation-evoked functional activation involves no capillary recruitment 

Although the capillary recruitment theory [45] has been known for some time now, recent 

microscopic evidence reveals that the role of the capillary bed is promoted without de novo 

recruitment of previously quiescent capillaries [44]. Here, we observed no change in VAD, as 

presented in Figure 2(a) and (b) for the HSC and CTRL regions, respectively. Statisitical analyses 

corroborate these findings, as shown in Figure 2(c) and (d), and in the paired T-test: p = 0.15 (>> 

critical value of 0.05) by comparing resting and stimulated states at the HSC region; p = 0.45 (>> 

critical value of 0.05) by comparing relative changes in vessel density between the HSC and CTRL 

regions. This observation is also supported by a study conducted by Göbel et al [63]. 

 

2.3.3 Changes in TFB correlate linearly with those in mCTV 

Figure 2.3(a) shows the coordinated scattering plot of the changes in TFB with the changes in 

mCTV at the HSC region, in which four quadrants separately stand for the characteristics of 

capillary flow: I, both mCTV and TFB increase; II, mCTV decreases but TFB increases; III, both 

mCTV and TFB decrease; IV, mCTV increases but TFB decreases, with population probabilities 

of 44%, 15%, 29% and 12%, respectively. Comparatively, a scattering distribution at the CTRL 
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region is shown in Figure 3(b), with quadrant distribution probabilities of 38%, 12%, 37% and 

13%, respectively. One noticeable phenemenon is that the population correlation coefficients 

(Corr) indicate a strong linear relationship between changes in mCTV and TFB in both HSC and 

CTRL regions (Corr = 0.64, P < 0.01 for both). Additionally, in accordance with Figure 1, the 

changes appear to favor the HSC region with a population in quadrant I outnumbering that of III 

by ~15%; in contrast, the CTRL region is more homogeneous with only a difference of ~1%. With 

that, continued exploration into stimulation-evoked changes in TFB and mCTV via further data 

mining was applied to the HSC region only. 

 
Figure 2.3. Statistical analysis of correlations between temporal fluctuation bandwidth, capillary transit velocity, and 
the changes of such during stimulation. (a) and (b) The distributions of TFB change along with mCTV change in the 
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HSC and CTRL regions, respectively, in which four quadrants (I, II, III, IV) denote the distribution probabilities within 
the region. The population correlation coefficient (Corr = 0.64) indicates a strong linear relationship between samples 
with a T-test probability of P < 0.01. Velocimetry data from the HSC region are further mined and presented in (c) – 
(g). In (c) – (f), histogram distributions of mCTV changes, TFB changes, resting state mCTV, and resting state TFB 
are respectively plotted in orange. (c) The joint distribution of mCTV changes against resting state mCTV showing a 
negative correlation (Corr = -0.75, P < 0.01). (d) The joint distribution of mCTV changes against resting state TFB 
showing no significant correlation (Corr = -0.25, P > 0.05). (e) The joint distribution of TFB changes against resting 
state mCTV showing a negative correlation (Corr = -0.67, P < 0.01). (f) The joint distribution of TFB changes against 
resting state TFB showing a negative correlation (Corr = -0.49, P < 0.05). (g) The histogram distributions of TFB at 
rest (red) and during stimulation (green) against those of mCTV. The joint distributions for rest and stimulation are 
color coded into red and green channels, respectively, with the yellow color indicating overlap. The linear fittings of 
data before and after stimulation marked by red/green perforated lines denote that TFB is proportional to mCTV for 
any state. R2 represents coefficient of determination. Each scatter in (a) and (b) represents a spatial capillary sample. 
Colorbar in (c) – (g) represents the counts of capillary samples. 
 

2.3.4 Changes in mCTV negatively correlate with resting state mCTV  

Figure 2.3(c) is a histogram distribution of mCTV changes with regard to resting state mCTV 

(coded in orange), as well as their joint population distributions (coded in parula colormap). 

Consistent with the trend noted by Li et al. [59], during electrical stimulation, lower mCTV values 

in resting state increased while upper values remained relatively unchanged; thereby forming a 

significant negative correlation (Corr = -0.75, P < 0.01) between mCTV changes and resting state 

mCTV. These heterogeneous velocity augmentations ultimately result in spatial capillary transit 

velocity homogenezation, contributing to the maintainence of OEF[14]. Yet, a statistically relevent 

connection between mCTV changes and resting state TFB (Corr = -0.25, P > 0.05) can not be 

established, as shown in Figure 3(d). 

 

2.3.5 Changes in TFB negatively correlate with both the mCTV and TBF at the resting state 

Similar to changes in mCTV, alternations in TFB also showed strong negative correlation with 

the mCTV (Corr = -0.67, P < 0.01) at the resting state, with the majority of bandwidth broadening 

occurring at a speed below the averaged mCTV, as shown in Figure 3(e). In addition, TFB 

alternations also show negative correlations to the TFB at the resting state (Corr = -0.49, P < 0.05), 

as shown in Figure 3(f). 
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2.3.6 TFB is proportional to mCTV at the resting state and with this trend continuing during 

activation 

Figure 2.3(g) displays the histogram distributions of absolute mCTV and TFB at rest (red) and 

during stimulation (green). Compared with the increased average TFB (0.05 mm/s, from 0.72 to 

0.77 mm/s), the average mCTV across the whole capillary bed presents a twofold elevation (0.10 

mm/s, from 1.30 to 1.40 mm/s). However, relative changes in mCTV and TFB are comparable. 

Joint distributions during resting and stimulated states are color coded into red and green channels, 

respectively, with the overlap coded in yellow, in which linear fittings are adopted to denote the 

direct proportion between mCTV and TFB either at rest (slope = 0.58, R2 = 0.80) or during 

stimulation (slope = 0.58, R2 = 0.77). The correlating changes between mCTV and TFB (Corr = 

0.71, P < 0.01) further begs for the question: in addition to the contribution of heterogeneous flow 

acceleration, is heterogeneous bandwidth broadening associated with oxygen extraction during 

functional hyperemia? 

 

2.4 Monte Carlo simulation for spatiotemporal-coupled capillary transit parameters 
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Figure 2.4. Monte Carlo simulation reveals the contributions of capillary transit velocity and temporal fluctuation 
bandwidth to capillary transit time homogenization during stimulation. 

 

To characterize the synergistic behavior of mCTV and TFB during stimulation, we applied a 

Monte Carlo simulation to those transit parameters as an extension to the current capillary transit 

time homogenization model [14]. As the hemodynamic behavior is spatially and temporally 

coupled in in vivo experiments, here the simulation would be useful to separately investigate the 

contributions of mCTV and TFB on the spatial distributions of capillary transit time. The 

simulation flow chart is listed in Figure 4. A total sample size of 200,000 positions is selected, 

corresponding to 10 simulated animals with 200 × 100 positions in each.  
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Initially, we derive two (spatial and temporal) universal distributions for the capillary transit 

speed regardless of the resting/stimulation states. First, the spatial distribution of mean capillary 

transit time (mCTT or 𝑡̅  is parameterized through the gamma probability density function in 

equation (2.6). Second, we use the inverse proportion between mCTV �̅�  and 𝑡̅ with a constant 

capillary transit path L = 0.4 mm [14], expressed as:  

�̅� 𝐿/𝑡̅,      (2.7) 

to describe the spatial mCTV as an inverse gamma distribution. The obtained distribution 

histograms of 𝑡̅ and �̅� are plotted in Figure 4(a) and (b). Third, we assume a temporal Gaussian 

process for the instantaneous capillary transit speed (v) [64], expressed as: 

𝑓 𝑣
√

𝑒 
𝒗

,     (2.8) 

where σ represents the TFB. Consequently, random events of v can be generated when σ and �̅� are 

known. 

Subsequently, by substituting a = 5 and b = 0.1 into equations (2.6) and (2.7), a population of 

resting state mCTTs 𝑡  and mCTVs (𝑣 ) can be simulated. Those initial parameters (a and b) are 

selected according to previous publications [11], [14], where most of the mCTTs are around 0.5 

and the CTTHs are about 0.25. Furthermore, based on our experimental results showing that σ is 

proportional to �̅� , while the TFB variations (∆σ) and mCTV variations (∆ �̅� ) are negatively 

correlated to 𝑣 , a series of linear approximations are added to calculate mCTV during stimulation 

(𝑣 , bandwidth at resting state (σr) and during stimulation (σs) from the simulated 𝑣 , as follows: 

 𝑣  𝑣  𝛼 ∙ 𝑣 𝛽,        (2.9) 

   𝜎  𝛾 ∙ 𝑣 ,      (2.10) 

   𝜎  𝛾 ∙ 𝑣 ,      (2.11) 
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where 𝛼  0.2, 𝛽  0.3 and 𝛾  0.5 are assigned empirically according to the fitting lines in Figs. 

3(c) and (g). It’s worth noting that the same proportion coefficient 𝛾 is utilized for both rest and 

stimulation, and here 𝛾 < 1 guarantees that σr and σs vary slower than 𝑣  and 𝑣 . 

By gradually changing the temporal distribution parameters from (𝑣 , σr) to (𝑣 , σr) and to (𝑣 , 

σs), we obtain the instantaneous capillary transit speed and delineate the speed distribution for the 

resting state (Figure 4(d)), the distribution with consideration of heterogeneous flow acceleration 

(Figure 4(e)), and the distribution that considering heterogeneous bandwidth broadening (Figure 

4(f)). By re-using the inverse relation in equation (2.7), the corresponding instantaneous transit 

time distributions were respectively calculated and displayed in Figs. 4(g) – (i). For comparison 

purpose, we overlay the distributions in (g) – (i) resulting in Figure 4(j), in which a capillary transit 

time homogenization is achieved mainly ascribed to coordinated alterations in mCTV (pink) and 

TFB (yellow).  

The averaged capillary transit parameters, including those of mCTV �̅� , TFB (σ), 

instantaneous transit speed (v), instantaneous transit time (t) and instantaneous spatial CTTH (δ), 

are listed in Table 2.1. First, together with the 10% mCTV increase during stimulation, the 

instantaneous transit speed increases ~ 10% and the instantaneous transit time decreases ~14%. 

Second, stemming from broadening of the temporal bandwidth, the averaged TFB increases ~10%. 

Consequently, the first factor contributes a 16% reduction in CTTH and the latter factor contributes 

an additional 13% reduction. Therefore, the functional benefits of spatiotemporal-coupled 

hemodynamic changes during hyperemia are interpreted through a decoupled step-by-step 

capillary transit time homogenization process that ensures sufficient cerebral oxygen delivery [14]. 

 

Table 2.1: The averaged capillary transit parameters in the Monte Carlo simulation 
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Capillary transit 
parameters 

Rest 
Velocity 

heterogeneity 
Bandwidth heterogeneity 

�̅� (mm/s) 0.9987 1.0990 1.0990 
σ (mm/s) 0.4994 0.4994 0.5495 

𝑣 (mm/s) 0.9981 1.0986 1.1019 
𝑡 (s) 0.5572 0.4809 0.4789 
δ (s) 0.3401 0.2848 0.2488 

 

2.5 Discussion and conclusion 

Previous study using ED-based velocimetry analysis has revealed the phenomenon of capillary 

flow homogenization (spatial velocity heterogeneity reduction) during neural activation in mouse 

brain, which supports the important role of microcirculatory adjustment in brain oxygenation along 

with functional hyperemia [11]. However, temporal fluctuation patterns in capillary vessels, which 

is critical to achieve the flow homogenization, was not included. In this study, we investigated 

cerebral capillary hemodynamics and its spatiotemporal adjustment during neural activation in 

vivo through mCTV, TFB, and variations within such. Our capillary velocimetry analyses prior to 

and during stimulation have demonstrated a concurrent increase in mCTV and TFB due to 

functional hyperemia arising from metabolically-demanding neural activities, consistent with 

previously published literature [13], [65]–[68]. Here, we have taken advantage of the high spatial 

and temporal resolution of OCT velocimetry (~50 μs), much faster than previously reported 

(milliseconds range) [59], [65], [69]. Consequently, one can expect more accurate velocity 

measurements in this study because of the higher upper limits for measurable velocities, according 

to the theoretical analysis discussed by Choi et al [70]. Additionally, total dwelling time at each 

spatial location was just 2.5 ms, which is short enough to exclude any possible motion artifacts 

due to respiration (261–750 ms) and/or heartbeat (71–194 ms)21. 

Further correlation analyses revealed that temporal fluctuations were proportional to transit 

velocity during both resting and stimulated states, with growth rates for both velocity and 
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fluctuation bandwidth negatively correlating with resting state mean transit velocity. On this 

foundation, linear approximations of resting TFB, stimulated TFB, and stimulated mCTV with 

regard to resting mCTV were used to model spatiotemporal-coupled transit parameters through a 

Monte Carlo simulation [71]. The linear approximations were made on solid experimental bases 

and the simulated results correlated well with experimental data. Although promising, the exact 

relationship between said parameters has not yet been fully explored. For instance, the saturation 

effect of high mCTV flow during activation may introduce nonlinear dependence [59], and the 

fact that cerebral functional connectivity regulates regional capillary blood flow in the brain [72]–

[74] may add complexity with possible uncertainties. These correlations should be rigorously 

investigated in future studies.  

It is noted that certain limitations do exist in the current experimental setup. First, due to system 

sensitivity fall off along the imaging depth and Rayleigh optical focusing, the OCT signal and 

subsequent velocimetry signal diminished along the imaging depth, degrading the lateral 

resolution for those capillaries that are out of the focus. This consequently limited our research 

scope to the superficial cortex (~300 μm, corresponding to layers I – III).  Second, inhalational 

anesthetic (e.g. isoflurane) is known to affect neuronal activity, cerebral metabolic rate and 

capillary blood flow speed in a dose-dependent manner [75]. Whilst the physiological parameters 

of all the animals were carefully monitored throughout this study, the potential effects of isoflurane 

may still be a confounding factor. The above-mentioned limitations might slightly bias 

quantification of the absolute transit parameters but are considered insignificant with regards to 

the relative comparisons between rest and stimulation. 

In conclusion, we have innovatively employed ED-based OCT velocimetry with high 

spatiotemporal resolution to investigate the characteristics of capillary hemodynamics with an 
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emphasis on temporal RBC fluctuations. A concurrent increase in mCTV and TFB has been 

observed during a series of electrical stimulations of the mouse somatosensory cortex. 

Additionally, the absolute values of mCTV and TFB were found in direct proportion with a scaling 

factor independent of stimulation state. Furthermore, we have observed that the changes in mCTV 

and TFB are both negatively correlated with resting state mCTV, with the latter too being 

negatively dependent on resting state TFB. Finally, we have introduced a spatiotemporal-coupled 

Monte Carlo model to differentiate the contributions of mCTV and TFB to the spatiotemporally-

coupled hemodynamics, which provides a means to analytically investigate the biophysical 

implications of capillary hemodynamics, allowing for the modeling of spatiotemporal-coupled 

hemodynamics, and for an understanding of the metabolic benefits of functional hyperemia. The 

experiments and simulations demonstrated in this work are expected to provide a more thorough 

and quantitative representation of capillary transit characteristics, which can be potentially used to 

investigate the hemodynamic responses in cerebral pathological conditions such as stroke and 

Alzheimer's diseases. 
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Chapter 3. Mapping and quantitating penetrating vessels in cortical brain 
with eigen-decomposition of OCT signals and subsequent principal 

component analysis 
 

In this chapter, the topic of interest has moved on to the penetrating vessels in the cerebral cortex. 

Here, I first introduce the limitations of current methods for penetrating vessel mapping, especially 

those affiliated with OCT techniques. Targeted at those problems, a quantitative penetrating vessel 

mapping method is proposed with eigen-decomposition of OCT signals and subsequent principal 

component analysis. This method is further integrated with other OCT techniques and applied to 

analyze the vascular adaptations in abnormal neurobiological states. 

 

3.1 Introduction: 

In the cerebral cortex, surface and subsurface vascular networks are bridged by penetrating vessels, 

consisting of penetrating arterioles (PA) that branch from pia arterioles and dive radially into the 

brain parenchyma, and ascending venules (AV) that drain blood from microcirculatory beds and 

return to the superficial cortex into the central sinus [76], [77]. In contrast to surface and subsurface 

vasculatures where substantial collateral circulations and interconnections exist, penetrating 

vessels appear to be largely void of anastomoses [17], [18], which makes them the anatomical 

bottleneck for blood supply to the deep capillary beds [19], [20]. Moreover, this highly 

characterized architecture of penetrating vessels, with their irreplaceable function, would suggest 

particular vulnerability during the development of neurodegenerative diseases that have vascular 

involvements [19], [20], [78]. Previous reports have demonstrated that a loss of flow to even a 

single PA can give rise to columnar microinfarction extending through the whole depth of the 

cortex [78]–[80]. Severe blood flow reduction and flow reversal are also observed in clotting AVs, 

highlighting a potential role for cortical venule occlusion in cognitive disorders [20]. Furthermore, 
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preclinical evidences show that, in hypertensive rodents, penetrating arterioles are induced to 

perform inward hypertrophic remodeling in response to the increased intrinsic myogenic tone [81]. 

For those with type 2 diabetes, penetrating vessels are observed to be highly tortuous with 

significant lumen dilation and branching [82]. In general, the degeneration and dysfunction of 

penetrating vessels appear to be directly correlated with manifold neurological diseases, such as 

Alzheimer’s disease [83], [84], cerebral amyloid angiopathy [85], perceptual deficit [80], and 

stroke [86]. Additionally, the accurate identification of penetrating vessels now becomes an 

important prerequisite for surgical procedures. For instance, the integration of neuroprosthetic 

devices to treat neurological disorders or investigate brain function requires an accurate 

visualization and quantification of penetrating vessel structures [87]. 

For this and other reasons, multiple imaging techniques have been employed to characterize the 

cerebral penetrating vessels. The most successful approach to date is high-throughput optical 

histology [88]–[90], which requires considerable efforts for tissue preparation and post-mortem 

staining. To speed up this process, a technical variation termed micro-optical sectioning 

tomography (MOST) was introduced to delineate three-dimensional (3-D) microvasculature by 

simultaneously performing ultrathin sectioning and microscopic imaging [91], [92]. However, the 

labor-intensive image stitching and vascular reconstruction post-processing remain unavoidable 

[93], often taking days to complete a single 3-D reconstruction. Moreover, an obvious limitation 

with histology is that it cannot provide dynamic and longitudinal information about circulations 

within living tissue, and thus cannot provide information about how penetrating blood flow adapts 

to metabolic regulation [89]. In this regard, in vivo “histology” through the use of functional 

magnetic resonance imaging (fMRI) [94], [95] has been used to map the penetrating arterioles and 

venules [96], [97]. However, the lateral resolution of state-of-the-art fMRI is limited to 50 × 50 
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µm [96], which is beyond the mean size of penetrating vessels [13]. In addition, the limited image 

contrast precludes the accurate identification and quantitation of penetrating vessels and associated 

blood flow rates. Recently, two-photon laser scanning microscopy (TPLSM) has been applied to 

high resolution angiography. While it offers the opportunity to map penetrating vessels together 

with connected capillary networks in individual penetrating territories [13], [20], [78], [89], [98], 

[99], the restricted imaging depth (up to 300 µm) and field of view (up to 300 × 300 µm) of TPLSM 

often poses a challenge to provide statistically powered analyses of cerebral blood flow dynamics 

in the investigation of neuro-degenerative disorders. In addition, the use of exogenous dyes and 

the long acquisition time due to its depth scanning protocol has made its translation into the clinic 

exceedingly difficult.   

OCT is currently emerging as a promising non-invasive and real-time imaging technique that 

can provide volumetric microstructural information with a cellular level resolution and with a wide 

field of view up to centimeter scale over a living subject. In imaging cortical penetrating vessels, 

the intrinsic OCT signal is primarily contributed by the axial blood flow that is perpendicular to 

the tissue surface. Therefore, combined with the Doppler principle, phase-resolved Doppler OCT 

(DOCT) [100] is developed to achieve flow measurement of penetrating vessels in vivo [54], [101]. 

However, DOCT usually possesses a sizeable noise background due to the heterogeneous optical 

properties of the interrogated tissue [102]. To counter this limitation, optical coherence 

tomography angiography (OCTA) has been developed [4]–[9] and integrated with DOCT [57], 

[58], [103]–[107] for volumetric imaging of the cerebral vasculature. Among them, Doppler 

optical microangiography (DOMAG) [104], [106] has recently proven its efficiency in the 

identification of penetrating arterioles and venules from a projection view through manual en-face 

slicing [108]. However, in practice, the projection-tail artifacts originating from surface pia vessels 
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[109] typically overshadow the penetrating vessels below, which poses a difficulty for DOMAG 

to identify the penetrating vessels with sufficient accuracy.   

In this chapter, we demonstrate an efficient OCTA solution that can automatically map cerebral 

penetrating vessels, by taking the advantages of the eigen decompensation (ED) frequency analysis 

and principal component analysis (PCA) upon the 3D OCT datasets. Firstly, the repeated OCT A-

lines are acquired from the cerebral cortices of mice in vivo according to the OCTA velocimetry 

protocol [10]. Then, the ensemble OCT A-line signals are recast into a feature space as spectral 

components of eigenvectors, where the components possess unique distributions for the signals 

that represent penetrating vessels, surface communicating vessels, vessel-free regions, and 

territories occupied by enriched capillaries. Subsequently, the PCA is applied to the ED spectral 

components to identify such specific eigen distributions. On this basis, the penetrating vessels can 

be distinguished from either the capillary bed or superficial vasculature network, immune to 

projection-tail artifacts due to the overlaying functional vessels. This feature permits automatic 

identification of penetrating vessels from large volume OCT datasets. We integrate this method 

into a unique OCT imaging platform that can provide a comprehensive picture of cerebral blood 

circulation, including the topology of the microvascular networks, the morphology of penetrating 

vessels, and the hemodynamics of capillary vessels. To demonstrate its utility, the imaging 

platform is used to show the functional behavior of penetrating blood flows before and after an 

ischemic insult in a middle cerebral artery occlusion model of rodent. 
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3.2 Materials and Methods 

3.2.1 System setup and imaging protocol 

The OCT system used in this study is a spectral domain system configuration (Figure 1), similar 

to that reported in [11]. In brief, the system employed a super luminescent diode (LS2000C SLD, 

Thorlab Inc. NJ, USA) that operated at a central wavelength of 1340 nm and a spectral bandwidth 

of 110 nm, producing an axial resolution of ~7 µm. In the sample arm, a 10X objective lens 

(LSM02, Thorlab Inc., NJ, USA) was used to deliver the light into sample, offering a lateral 

resolution of 7 µm. For detecting the interference signal, a home-made spectrometer that is 

equipped with a fast line scan camera (SU1024-LDH2, Goodrich Inc., NJ, USA) was used, capable 

of an A-line rate of up to 92 kHz. The incident power on the sample was 3.5 mW and the system 

sensitivity was measured to be 105 dB. In consideration of the balance between temporal resolution 

and temporal sensitivity [6] to detect both fast and slow flow, the A-line speed was adjusted to 20 

kHz and kept constant throughout the experiments. 

The scanning protocol is shown in Figure 2A, which applies to all the experiments throughout. 

Specifically, there are 400 × 400 spatial positions designated at the sample surface, covering a 

region of 2.8 × 2.8 mm, which was achieved by raster scanning the probe beam using a galvo-

scanner (6210H, Cambridge technology, MA, USA). At each spatial location, 50 A-lines were 

repeatedly acquired, i.e. M-mode scan. Thus, a 3D volume consists of 400 × 50 × 400 A-lines. 
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Figure 3.1. Schematic setup of OCT system for penetrating vessel mapping 
 

3.2.2 Animal preparation 

Mice (strain: C57BL/6, age: 2 months, weight: 24.4 ± 2.5 g, n = 5) were used in this study to 

demonstrate the utility of the proposed method. During procedure, the animal was anesthetized 

through isoflurane inhalation (0.2 L/min oxygen mixed with 0.8 L/min air), and surgically 

prepared by opening a cranial window above the right sematosensory cortex. The animal was then 

placed in a stereotaxic frame under the OCT probe. After baseline OCT imaging at resting state, 

middle cerebral artery occlusion (MCAO) was surgically given to induce permanent regional 

hypoperfusion state of ischemic stroke [110]. The animal then received second OCT imaging. 

Throughout imaging, body temperature was maintained at 36.8 ± 0.2 °C via a feedback 

homeothermic blanket system (50-7220F, Harvard Apparatus). The animal procedures described 

in this study were reviewed and approved by the Institutional Animal Care and Use Committee 

(IACUC) of University of Washington. 
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3.2.3 Penetrating vessel mapping and statistical explanation 

The proposed method to map the penetrating vessels within cortical tissue is a continuation of 

OCTA velocimetry, as detailed in chapter 1 (equation (1.4) are rephrased here for the consistency 

of this chapter), where the OCT signals were decomposed into eigenvalues and eigenvectors 

through the ED processing. Following this work, assuming eigenvectors are derived from the 

ensemble A-lines captured at the same spatial location (Figure 2A), the spectral component of each 

eigenvector can be obtained by taking its first lag-one autocorrelation, as expressed in equation 

(3.1)  

𝜔 / arg ∑ 𝑒∗ 𝑚 𝑒 𝑚 1 ,      (3.1) 

where FPS denotes the sampling frequency (20 kHz in this study), arg{.} is the phase angle, ND is 

the number of repeated A-lines (50 in this case), ek (m+1) and ek
*(m) are the kth eigenvector from 

the (m+1)th A-line and the complex conjugate of the kth eigenvector from the mth A-line. In the 

following context, the mapping of the spectral components of eigenvectors is referred to as eigen 

components (EC). Note that in Figure 2B, each EC  along z’-direction refers to the kth spectral 

component (𝜔 ), with a value in the range of [0, 20,000], rather than in the depth scan of spatial 

domain (z-direction in Figure 2A).  
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Figure 3.2. Data processing flow chart for mapping penetrating vessels. (A) Data acquisition protocol, where there are 
400 × 400 spatial positions, covering a region of 2.8 × 2.8 mm. At each spatial location, 50 A-lines were repeatedly 
acquired. (B) Eigen component (EC) of the ensemble OCT signals for the dataset shown in (A). (C) Schematic of EC 
re-arranged from an en-face (x - y) view. (D) Principal component analysis (PCA) transformation vectors of (C), in 
which the first group reveals the distribution of penetrating vessels. Coordinates x: fast scan axis, y: slow scan axis, z: 
depth scan axis, z’: eigen component axis, z’’: principle component axis   
 

The derived dataset (Figure 2B) was then rearranged from the perspective of an en-face (x - y) 

view (Figure 2C). PCA was then applied by taking each eigen component (the same order of 𝜔 ) 

as the observation and 2-D distribution of the eigen components as the features (i.e. each x-y slice), 

resulting in:  

𝜆 , 𝜆 , ⋯ 𝜆 ,

𝜆 , 𝜆 , ⋯ 𝜆 ,

⋮ ⋱ ⋯ ⋮
𝜆 , 𝜆 , ⋯ 𝜆 ,

⎣
⎢
⎢
⎢
⎡𝑈 𝑈 ⋯ 𝑈

𝑈 𝑈 ⋯ 𝑈
⋮ ⋱ ⋯ ⋮

𝑈 𝑈 ⋯ 𝑈 ⎦
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎡𝜔 𝜔 ⋯ 𝜔

𝜔 𝜔 ⋯ 𝜔
⋮ ⋱ ⋯ ⋮

𝜔 𝜔 ⋯ 𝜔 ⎦
⎥
⎥
⎥
⎤

, (3.2) 

where the subscripts 1, 2, …, N denote spatial position index (N = 400 × 400) , superscripts (1), 

(2), …, (k) denote ranks of eigen components [(k) = 50], and superscripts [1], [2], …,  [k] denote 

ranks of principle components after PCA [[k] = 50]. λ denotes the dimensionality reduced principle 

components of the EC, i.e. the second matrix in the right side of Eq. (2). Note that the dimension 
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shrinks from (N×k) to (k×k)). U denotes the PCA transformation coefficients, implying the 

contribution of each element in U to each element in λ. According to the definition of PCA, λ gives 

the first k dimensional approximations of the EC, with the first principle component 

𝜆 , , 𝜆 , , … , 𝜆 ,   containing most of the information. Correspondingly, the first group 

of the transformation vector 𝑈 , 𝑈 , … , 𝑈  indicates the best linear combination of the first 

principle component, which inversely correlates with the penetrating vessels, giving the 

information about the spatial morphology of penetrating vessels from the en-face (x-y) view. The 

transformation vectors grouped according to the principle components 1, 2, …, k are schematically 

shown in Figure 2D with dynamic range scaled into [0, 255]. Statistical analyses of why 

𝑈 , 𝑈 , … , 𝑈  can be used for mapping penetrating vessels (PVM) are detailed in the next 

paragraph. 
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Figure 3.3. Statistical explanation of PCA transformation of EC of the captured OCT datasets for mapping the 
penetrating vessels. (A) Schematic diagram of EC data projection towards its most likely distributed direction along 
𝑈 . (B) 2-D mapping of the PCA transformation vector 𝑈 , i.e. penetrating vessel map. (C) Dimension-reduced EC 
data expressed as principle components, in which the first component, marked by the red square, represents the 
dominant eigen distribution. (D) Sigmoid fitting of the first principle component reveals that the eigen distribution 
mainly follows a subtle logistic curve. (E) Power analysis of (C) indicating the dominance of logistic distribution in 
the EC of cerebral OCT data. (F) Representative B-frame used to additionally validate the logistic distribution (lower 
panel) by averaging ECs in one B-frame (upper panel). In the upper figure, the arrows indicate three regions with 
penetrating vessels resulting in uniform eigen distributions as in (G) top to bottom, respectively. 
 

Here, PCA transformation is equivalent to projecting EC data in new directions based on their 

distribution probability, and sorting the new data components in descending order. The data 

projection towards the most likely distribution direction is schematically shown in Figure 3A with 
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the corresponding transformation vector re-mapped in Figure 3B, i.e. the penetrating vessel map. 

After this transformation, the first principle component (red square in Figure 3C) represents the 

most likely eigen distribution, which follows a logistic curve, as approximated through sigmoid 

fitting in Figure 3D. The fitting curve is also presented in Eq. (3) with center eigen component ω0 

= 14.0, slope α = 0.2, maximum Qmax = 1.9 × 106, and minimum Qmin = -4.2 × 106. In doing so, an 

excellent fitting coefficient of determination R2 = 0.9977 is obtained.  

𝑓 𝜔 𝑄 .          (3.3) 

Moreover, the first principle component holds the highest quantity of frequency information, 

as characterized by the power analysis in Figure 3E and its subgraph (power in logarithmic scale). 

The first principle component has a power over 30 dB higher than the second one, highlighting the 

dominance of this well-defined logistic eigen distribution. This dominance is also supported by 

showing EC of one randomly selected B-frame and averaging over each line, which also yields a 

logistic distribution with a center ω0 = 12.7, a slope α = 0.2 and a fitting R2 = 0.9946, as shown in 

Figure 3F. Note here that it is not necessary for Qmax = 1.7 × 104 and Qmin = 0.1 × 104 to be close 

to those in Figure 3D, since the two expressions represent different amounts of power. However, 

as marked by the arrows in Figure 3F, since the penetrating flow has a similar speed along each 

A-line, the existence of penetrating vessels gives a uniform eigen distribution that locally breaks 

the sigmoid/logistic approximation, as shown in Figure 3G. By revisiting Eq. (2), we discovered 

that this local disruption of logistic distribution can be generalized as low values of certain 

elements in 𝑈 , 𝑈 , … , 𝑈 , which provides a unique opportunity to map the penetrating 

vessels in the cortical tissue. 
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3.2.4 Quantification of penetrating vessel density  

Mapped penetrating vessels above (i.e. Figure 3B) provides an opportunity to quantitate these 

vessels. Here, we propose a metric of penetrating vessel density (PVD) to indicate the number of 

active penetrating vessels within the scanned tissue volume. To provide PVD, two methods were 

employed in this study. The first was to use human-guided, semi-automatic vessel counting [111], 

which is however time consuming but can be regarded as an accurate quantification method. The 

second was an automatic approach which is more desirable for practical applications. Below are 

the steps to achieve automatic assessment of PVD: (1) smoothing the penetrating vessel map (e.g. 

Figure 3B) by a 2-D median filter with a kernel size of 3 × 3 pixels; (2) binarizing the result by 

assigning an empirical threshold of 100 in our study; (3) removing small regions with a size of 5 

pixels or below from the map, based on the facts that the lateral spacing  of 7 µm and the typical 

lumen diameter of penetrating arterioles of 18 µm [80]; (4) identifying pixel connectivity and 

counting centroids of the connected pixels; and finally (5) PVD was calculated by taking the ratio 

of the amount of the centroids to the scanned area.   

 

3.3 Results: 

3.3.1 Validation of the proposed penetrating vessel mapping PVM 

Here, we compare the spatial locations of penetrating vessels identified by PVM with those 

identified by the OCT structures and OCTA angiograms (by OMAG algorithm) [10]. The 

representative B-frame EC and en-face view of penetrating vessel map are re-arranged and shown 

in Figure 4A and 4B, respectively. Figure 4A represents the B-frame EC located at the spatial 

location marked as the dashed line in Figure 4B. Slicing through the cross-sectional frames in the 

3D OMAG angiograms and OCT structures, 5 consecutive frames located at the vicinity of Figure 
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4A were selected to show the 3D appearance of penetrating vessels, which are given in Figure 4C 

and 4D, respectively. Vessels that have well-defined penetration can be identified in Figure 4A, 

denoted by the interlinking arrows, and marked by the corresponding arrows in Figure 4B, and 

squares in Figs. 4C and 4D, respectively. Here, we can appreciate that the penetrating vessels are 

distinguished from surrounding pia vessels (representatively marked by “P”) and capillary beds 

(marked by “C”), which would generally be difficult to differentiate in a single cross-sectional 

image, either structure or angiogram. For better visualization of the penetrating vessels, an x - z 

maximum intensity projection (MIP) of flow cross-sections from Figure 4C is provided in Figure 

4E. A more elaborate analysis of Figure 4E indicates that the penetrating vessels are those directly 

connected with the surface vessels (i.e. trunks of the penetrating trees) with no involvement of 

slender branches. Such feature makes the quantification of PVD much easier from the PVM 

images.  
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Figure 3.4. Validation of penetrating vessel mapping. (A) Representative B-frame eigen component. (B) The en-face 
view penetrating vessel map, where the dashed line indicates the position of (A). (C) 5-successive cross-sectional 
angiograms around the B-frame (A), which are taken from the 3D OMAG dataset. (D) The same location as in (C) 
but the structure OCT B-frames. (E) x - z MIP of 5 angiograms in (C). The four identifiable penetrating vessels in (A) 
are marked by squares in (C) – (E). The “P” in (A) – (E) denotes a typical surface pia vessel. The “C” denotes a typical 
capillary bed without involvement of big vessels. (F) Comparison of the PVD values among different imaging 
approaches where PVM-M, semiautomatic manual approach; PVM-A, automatic approach; MOST, micro-optical 
sectioning tomography; TP1 and TP2; two-photon laser scanning microscopy in two different studies. Scale bar = 500 
µm. 

 

We calculated the PVDs for volume scans obtained from all animals (n = 5) using both 

automatic and semi-automatic quantification methods, where the former gives mean PVD = 23.9 

and standard deviation (STD) = 4.6, while the latter gives mean PVD = 23.9 and STD = 6.5. 
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Agreement between these values validates the automatic assessment. These values are also agreed 

well with those reported in prior literatures. For example, mean = 24.6 and STD = 7.7 (n = 5) were 

reported using MOST 20. Using TPLSM, mean PVD = 22.0 in one study (n = 9, STD not available) 

[80] and 23.4 in another study (n = 6, STD not available) [20] were reported. For easier 

comparison, these results are also plotted in Figure 3.4F.  

 

3.3.2 Comprehensive OCT cerebral analysis achieved by a single volumetric scan 

In the analysis, the OCT derived results, including penetrating vessel maps, were first cropped 

to remove the regions near the cranial window edge to improve the fidelity of the measurement. 

One example of the cropped map of Figure 4B is shown in Figure 5A. Being the sources to transit 

blood vertically, penetrating vessels have intimate connection with the interwoven capillary 

networks, whose topology and hemodynamics are fundamental to the understanding of 

neurovascular coupling and the interpretation of brain functions [56], [89], [112]. In order to 

analyze the microvascular properties (i.e. capillary morphology, topology and blood flow 

dynamics) corresponding to the spatial locations of penetrating and pia vessels, we applied 

multiple OCTA algorithms to the same dataset. We used the prevailing OMAG algorithm [10], to 

achieve the structure (Figs. 5B) and vasculature images (Figure 5C),  and the OCTA capillary 

velocimetry [10] to reveal the capillary flow speeds (Figure 5D). With these OCT derived cerebral 

vascular maps, it is relatively straightforward to provide more informative maps to illustrate the 

relationship between penetrating vessels and cerebral pia vessel networks. For example, the PVM 

map (Figure 5A) can be combined with OCTA map (Figure 5C) to form a single color-map as 

Figure 5E, where the penetrating vessels are coded in red color. As well, the combined image in 

Figure 5F represents the penetrating vessels of Figure 5A (red), the surface pia vessels of Figure 
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5B (green), and the normalized capillary flow velocity of Figure 5D (purple). These combined 

images represent an innovative way to study the neural degenerations [89]; for instance, Figure 5E 

would be useful to explore capillary density within certain columnar penetrating territory, or 

Figure 5F can be helpful in the investigation of the spatial dependence of capillary blood flow on 

the topology of penetrating and pia vessels.  

In addition, DOMAG processing [106] of the same OCT dataset was also performed to provide 

an en-face view of bidirectional flow map (Figure 5G), where the green color indicates flow 

penetrating towards deep brain and the red indicates flow ascending to brain surface. To prevent 

the analysis of PVM from involving pia vessels, a classical method for DOMAG-based penetrating 

vessel identification was to use x-y slicing through the 3-D dataset (Figure 5H), and selecting the 

penetrating vessels at a given depth (e.g. ~50 µm from cortical surface (Figure 5I), where red 

represents penetrating flow and blue represents ascending flow). Although DOMAG provides an 

alternative way of mapping penetrating vessels, it has practical limitations: (1) the tailing artifacts 

originating from surface vessels may shadow the underneath penetrating flow; (2) the penetrating 

vessel identification tends to be subjective and sensitive to tissue surface topology; and (3) the 

slices at certain depths are also affected by secondary or lower rank penetrating branches that can 

give ambiguous measurable Doppler signals. 
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Figure 3.5. Comprehensive OCT cerebral analysis achieved by a single volumetric scan. (A) Penetrating vessel map, 
where black dots indicate the locations of penetrating vessels. (B) En-face view of tissue anatomy by mean intensity 
projection of 3D OCT structural signals. (C) En-face view of cerebral vasculature by mean intensity projection of 3D 
OMAG angiogram. (D) En-face view of capillary flow velocity normalized to [0, 1] obtained from OCTA velocimetry. 
(E) Composite image by overlying (A) on (C) to show the relationship of the penetrating vessels (red) with cerebral 
vascular networks. (F) Composite image by rendering penetrating vessels (in red), surface pia vessels (in green) and 
normalized capillary flow velocity (in purple) into one single color image. (G) Bidirectional DOMAG map with green 
representing the flow penetrating towards deep brain and red representing flow ascending to brain surface. (H) 3-D 
visualization of the DOMAG result. (I) An x-y slice from (H) at a depth of ~50 µm from cortical surface. In (H) and 
(I), the blue represents penetrating flow and red represents ascending flow. Scale bar = 500 µm. 
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3.3.3 The utility of cerebral PVM diagnosis in diseased status: 

Penetrating vessels are reported to correlate with various neural degeneration disorders [83]–

[86], among which acute ischemic stroke is of vital importance. In this study, a MCAO stroke 

model was carried out and the OCT-derived cerebral vasculature before and after MCAO were 

compared to investigate neurovascular adaption during stroke. Figure 6A and Figure 6B are en-

face views of cerebral OCTA angiograms of the same region of mouse cerebral cortex before and 

after MCAO, respectively. In experiments, after the MCAO surgery, it became difficult to re-

position the mouse exactly in the same way as baseline. However, it is required for the results to 

be co-registered between different time points. To meet this requirement, we applied an automatic 

affine registration [113] to co-register the results between Figure 6A and Figure 6B, resulting in a 

spatially-aligned image (Figure 6C) with regard to Figure 6A, where the un-aligned regions near 

the edge are zero-padded. The same was also applied to the PVM maps before and after MCAO 

(Figs. 6D – 6F). Scrutinizing through the co-registered images, both the perfused capillary beds 

(Figure 6C compared to Figure 6A) and the number of penetrating vessels (Figure 6F compared to 

Figure 6D) are observed to reduce dramatically due to the induced ischemic stroke. Moreover, the 

active arterio-arterial anastomosis (AAA) were evoked by ischemia in the infarct region (arrow 

heads in Figure 6C). To show the reduction of the numbers of penetrating vessels in cross sectional 

images, we selected representative EC maps at the same cortical location for comparison, which 

is shown in Figure 6G corresponding to the equivalent B-frames located at the dashed line in Figs. 

6D and 6F. Each of the penetrating vessels identified by circles in Figs. 6D and 6F are marked by 

an arrow in Figure 6G. In this cross section, only two out of the six penetrating vessels are 

preserved after MCAO. A more comprehensive quantification is accomplished by calculating PVD 

across the maps of 6D and 6F, the results of which are plotted in the bar graph in Figure 6H. A 
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35% reduction in PVD was observed in this particular animal. Overall, an average of 41% 

reduction in PVD was observed for all 5 animals post-MCAO, as shown in Figure 6I. 

 

Figure 3.6. PVM-based cerebral vascular analyses of animals subject to MCAO. (A) En-face view of OCTA 
angiogram of a representative mouse cerebral cortex at baseline. (B) En-face view of OCTA angiogram of the same 
animal post-MCAO. (C) Affine registered OCTA (B) in reference to (A). (D) and (E) Penetrating vessel maps of the 
same region before and after MCAO, respectively. (F) Affine registered map of (E) with respect to (D). Adjusted 
edges after affine registration are marked by red dashed triangles in (C) and (F), respectively. (G) B-frame ECs 
corresponding to the dashed lines in (D) (upper) and (F) (lower). Each of the identified penetrating vessels is marked 
by a circle in (D) and (F) and an arrow in (G). (H) and (I) The bar graphs of automatically quantified PVD before and 
after MCAO, for this single animal and the statistics across 5 animals, respectively. Scale bar = 500 µm. 
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3.4 Discussion and conclusions 

In this chapter, we have proposed and demonstrated a useful technique to map and quantitate the 

cortical penetrating vessels in animal models in vivo. Compared with conventional approaches 

relying on TPLSM, this OCTA-based PVM can identify individual penetrating vessels within a 

wider field of view, without any involvement of exogenous contrast agents. Moreover, compared 

to Doppler based OCTA approaches, like DOMAG, PVM takes the advantages of the unique 

statistical characteristics of cerebral vasculature, which is proven to be free from the tailing 

artifacts that are prevalent in almost any OCTA and DOCT variations. Furthermore, the eigen 

decompensation analysis and principal component analysis in the PVM are performed on an A-

line basis. In other words, the vessel penetration information implied in the entire A-line is 

statistically projected onto the en-face (x-y) plane, independent from the depth selection that 

Doppler based approaches are usually subject to. In future, the detection of 3D vessel orientations 

[114] and the 3D vessel tracing can be adopted to extend current PVM to delineate the 3D 

architecture of penetrating vessels from volumetric OCT datasets. 

To demonstrate the pre-clinical potential of PVM method, we conducted a controlled 

experiment utilizing a MCAO stroke model in mice. A significant decrease in PVD (41% overall, 

n = 5) has been observed after ischemic stroke through automatic quantification. Interestingly, 

local to the infarct region, more penetrating vessels are visualized around the AAA territory and 

its connected arterioles, as indicated by the white arrow heads in Figure 6F. Also, the survived 

penetrating vessels appear to have increased vessel lumen diameters (comparing Figure 6F with 

Figure 6D). This is probably due to a passive neurovascular response to the induced ischemic 

stroke, which minimizes flow resistance from an otherwise anatomical bottleneck - the penetrating 

vessels, providing augmented blood flow to the capillary beds. In addition, PVM is also useful in 
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revealing vessel damage information during stroke, as indicated by regions with intensities lower 

than their co-registered baseline counterparts but higher than those of penetrating vessels. A 

reasonable interpretation may be that the stroke-induced ischemia alters the statistical properties 

of the local microcirculatory tissue beds, which also undermines the dominant logistic eigen 

distribution to some extent in the ED and PCA analysis of the OCT signals. The delineation of 

vessel damages may need further optimization, which is beyond the scope of the current topic. 

Although the PVM is technically promising, several limitations should be addressed in future 

development. As described by Kozai and colleagues, large penetrating vessels do not penetrate 

into the cortex exactly perpendicular from the surface, but deviate slightly from the normal axis in 

a statistically predictable manner [115], which seemingly makes our A-line-based identification 

difficult. However, we observed in our study that most of the regions occupied by penetrating 

vessels have the appearance of “commas” shape instead of “round dots”, suggesting the robustness 

and some degree of tolerance of the proposed statistical projection in dealing with the slanted 

appearance of large penetrating vessels. Another limitation of our method is the lack of directional 

information, i.e. incapable of distinguishing between penetrating arterioles and ascending venules. 

In order to overcome this shortcoming, one possible solution could be to utilize the phase 

information in the complex OCT signal to calculate the +/- signed lag-one autocorrelation of 

eigenvectors in the ED analysis. The study of the direction-resolved PVM is currently ongoing. 

Other concerns may exist with the MCAO model as it directly works on the upstream middle 

cerebral artery rather than the penetrating vessels. Without loss of generality, however, the 

occlusion of an upstream artery is equivalent to blocking groups of penetrating arterioles 

downstream, resulting in a comparable cerebral capillary ischemia through the vascular hierarchy. 



www.manaraa.com

51 
 

Typically, the study of small vessel diseases is achieved by occluding individual penetrating 

vessels through photothrombosis [19], [80], [89], which has been listed in our future plans.  

In conclusion, we have developed an OCT-based mapping of penetrating vessels to assess 

cortical vessels and their possible remodeling under ischemic stroke. Eigen decompensation 

frequency analysis was employed to recast the spatiotemporal OCT signals as eigen 

representations in a feature space domain. The principal component analysis-based feature 

dimension reduction was consequently adopted to statistically project the eigen representations 

onto an en-face x-y plane, upon which the penetrating vessels can be identified and mapped based 

on the fact that the penetrating vessels locally break the subtle eigen distributions defined by the 

lateral-flow-dominated cerebral tissue beds. The PVM allows for the rapid, automatic 

identification of penetrating vessels from large volume OCT datasets acquired from cortical tissue 

with a wide field of view, free from comet-tail artifacts. A reduction in PVD and the remodeling 

of penetrating vessel patterns after MCAO were observed and quantified, which may be useful in 

improving our understanding of vascular adaptations to meet the metabolic requirements of 

abnormal neurobiological states. This technique may additionally prove useful in providing 

clinical and pre-clinical guidance for rational design of intracerebral probes, neuroprosthetic 

devices, and surgical procedures to minimize localized cerebral bleeding. 
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4. Morphological investigation of cortical surface vessels with automatic vessel 
diameter quantification and vessel tracing in OCT angiography  

 

In this chapter, the topic of interest has been shifted to the cortical surface vessels mainly consisted 

of large communicating arteries and veins, whose functions are highly related to their 

morphological properties. To systematically analyze the vasculature, I built a comprehensive 

vasculature analysis framework including an innovative way of vessel diameter quantification and 

a novel approach for vessel tracing. The algorithms are first validated with well-characterized 

microfluidic flow phantoms, and then applied to cortical surface vessels in vivo. All the quantified 

results agree well with the microscopic findings in the literatures. 

 

4.1 Introduction 

The vasculature plays an important role in tissue development and remodeling under both normal 

and pathological conditions. For instance, in neurology, dysregulated angiogenesis is implicated 

in stroke, Alzheimer’s disease and motor neuron disease [116]; in ophthalmology, evidence of 

vascular remodeling provides a critical indication of disease progression [117]; in oncology, the 

study of irregular tumor vessels can inform drug delivery approaches [118]; and during wound 

healing, specific vessel parameters have been shown to correlate with wound recovery time [111]. 

Rigorous investigation into the properties of specific vascular beds, therefore, has the potential to 

further understanding of disease pathogenesis, and lead to novel methods for the prevention and 

treatment of human disease.  

OCT is a promising non-contact and high resolution 3-dimensional imaging technique that 

utilizes backscattering light to image tissue structures in vivo [119]. Its functional extension to 

OCT-based angiography (OCTA) has proven to have a high clinical significance, allowing 
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mapping of vascular networks directly from intrinsic OCT signals without requiring the use of 

exogenous dye [4], [6]. Since the initial applications of OCTA within the field of ophthalmology, 

numerous methods have been reported to measure the geometrical and morphological parameters 

of blood vessels from the acquired angiograms [61], [120]. Similar techniques have also been 

applied to small animal studies that demonstrate good correlations between vessel morphology 

and blood flow dynamics [11], [121]. To systematically quantify the vasculature, a common 

approach is to extract the key vascularity matrices, including vessel area density [55], [61], [121], 

vessel diameter [61], [122]–[124], vessel tortuosity [125]–[127], and vessel branching angle [124], 

[128]. Vessel diameter, in particular, allows the morphologic assessment of blood transport 

dynamics, by characterizing changes within the vascular bed (i.e. dilation or contraction) that 

directly relate to differences in blood flow. As a pilot clinical study, Goldenberg et al. reported a 

method for the manual measurement of retinal vessel diameter from cross-sectional OCT structural 

images [123]. Based on the results from manual segmentation, Pilch et al. further developed a 

statistical shape model that utilized supervised learning for automatic vessel segmentation and 

diameter quantification [129]. However, only big arterioles or venules were measured from the 

raster-scanned cross-sectional images. In an alternate approach, diameter distributions of en face 

choroidal vessels were quantified through a multi-scale morphological analysis with adaptive 

segmentation windows [130]. This method of quantification relies on assigned window sizes, 

however, requiring further optimization steps to improve its accuracy. In 2015, Yousefi et al. 

proposed a hybrid segmentation technique by combining Hessian filtering and OCTA intensity 

signals through a weighted average scheme, and accordingly quantified the vessel radius through 

distance transformation [122]. While promising, distance transformation, by simply estimating the 

distance to the nearest unidirectional boundary, does not accurately predict vessel radius (in most 
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cases, it will underestimate the radius especially for small vessels), and therefore the quantified 

values will likely be inconsistent even within the same vessel branch. This method of 

quantification is therefore limited in its application to clinical settings. Recently, the same group 

reported a clinically acceptable approach achieved by a series of vessel binarization, 

skeletonization, block-wise box counting (BWBC) and Gaussian filtering [61]. Using this method, 

significant difference in vessel diameter were reported when comparing control subjects with those 

suffering from macular telangiectasia type 2. Without consideration of vessel morphology, 

however, this method cannot provide consistent and robust measurement down to individual vessel 

branches. It is necessary to map the diameter of each specific vessel rather than the average 

diameter of an arbitrary block. 

In this chapter we present an automated framework for the quantitative characterization of 

blood vessel diameter, down to the level of individual capillaries, using a gradient-guided 

mimimum radial distance (MRD) measurement. We validated this method by imaging and 

quantifying channel parameters within well-characterized microfluidic flow phantoms. Compared 

to the clinically well-accepted method in [61], our approach demonstrated superior consistency 

and accuracy, as well as a high tolerance to rotation of the vasculature patterns. We next developed 

a modified A* algorithm to trace vessel branches and calculate the diameter of each branch. Our 

rationale for using A* tracing was based on the key observation that blood cells always flow 

through the shortest vascular path between bifurcations. Following initial validation in flow 

phantoms, we applied our proposed algorithms to the analysis of mouse cortical vasculature in 

vivo. The values obtained appear to obey Murray’s law [131] until reaching the capillary level, 

correlating well with previously published data [132], [133]. After tracing, vessel tortuosity and 
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vessel branching angle were automatically measured, establishing our approach as a 

comprehensive vasculature evaluation framework. 

 

4.2 Material Preparation and Imaging  

4.2.1 System setup 

A spectral domain OCT system was developed and utilized for imaging. The schematic setup is 

presented in Figure 1. The system contained a broadband super luminescent diode (LS2000C SLD, 

Thorlab Inc.) with a central wavelength of 1310 nm and a spectral bandwidth of 110 nm, which 

provided an axial resolution of ~ 7 µm in the air. In the sample arm, a 10X objective lens was used 

to focus light onto the sample, corresponding to a lateral resolution of ~7 µm at full wide of half 

maximum. The interference signals were detected by a spectrometer that adopted a high-speed line 

scan camera (SU1024-LDH2, Goodrich Inc.) working at 92 kHz. With an incident light power of 

3.5 mW, the system sensitivity was measured to be ~105 dB. 

 

4.2.2 Microfluidic fabrication and animal preparation 

For validation of our algorithms, image acquisition was carried out both in vitro within flow 

phantoms, and in vivo within a murine model, as shown in Figure 1. We devised 3 microfluidic 

patterns to mimic the real cerebral vasculature: a healthy vasculature, an ischemic vasculature with 

thoroughfare channels, and an ischemic vasculature with vessel dilation. Microfluidic patterns 

were designed using LayoutEditor software (© Juspertor, 2018) and transferred to silicon wafers 

via photolithographic patterning of positive photoresist followed by deep reactive-ion etching of 

exposed silicon. Patterns were then transferred to Polydimethylsiloxane (PDMS) using soft 

lithographic techniques, as previously described [134], [135]. PDMS was mixed with 0.18% TiO2 
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particles prior to fabrication, in order to better mimic the optical properties of human tissue, and 

all PDMS devices were created with a final height of 1 mm. The microchannels within the flow 

phantoms were perfused with 1% intralipid solution at 1 mL/hr to mimic moving red blood cells. 

The intralipid solution was injected from the inlet, flowed through hierarchical vessel trees (with 

channels representing arterioles, capillaries, and venules), and finally emptied into the outlet 

reservoir. At each bifurcation point, a higher-order channel split into two equal-width lower-order 

channels. All tube heights were kept at 40 µm for ease of fabrication and perfusion. For in vivo 

experiments, an anesthetized mouse (strain: C57BL/6, age: 2 months) was surgically prepared 

through open-skull cranial window technique and carefully positioned in a stereotactic frame under 

the scanning probe, as in [136]. The animal procedures were reviewed and approved by the 

Institutional Animal Care and Use Committee (IACUC) of University of Washington.  

 
 
Figure 4.1. Schematic OCT system setup for the demonstration of automatic vessel diameter quantification and 
automatic vessel tracing 
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4.2.3 OCTA imaging protocols and data pre-processing 

During OCTA data collection, we utilized repeated B-frame scanning protocols. Briefly, for the 

microfluidic channels, we acquired 738 A-lines along the fast scanning direction to pile into one 

B-frame, which covered a range of 4.8 mm. In the slow scanning direction, 800 B-frame positions 

were sampled with 8 repeated frames at each position, covering a range of 5.2 mm. The frame rate 

was controlled at 90 fps. For the in vivo cerebral imaging, a faster repetition rate of 180 fps was 

used to minimize artifacts from tissue motion. Here, we acquired 400 A-lines along the fast 

scanning direction, 3200 B-frames (400 B-positions × 8 frame repetitions) along the slow scanning 

direction, which covered a field of view of 3.5 × 3.5 mm.  

After the data acquisition, complex-OCT-signal based OMAG [111] was employed to delineate 

the flow signal from the static tissue background. Then, the 3D angiography datasets were 

collapsed into 2D through layer-segmented maximum intensity projection (MIP) [113]. 

 

4.3 Vessel diameter quantification  

Figure 2(a) shows the layout of the designed healthy vasculature: a highly symmetric pattern with 

five hierarchical channels (channel widths of 240 µm, 120 µm, 60 µm, 30 µm, and 15 µm) that 

cover a region of 3.94 × 4.93 mm. The corresponding en-face view OCTA vasculature is visualized 

in Figure 2(b), in which a red line indicates a typical cross-session of the capillary network as 

shown in the structure and flow images in Figure 2(c) and (d), respectively.  
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Figure 4.2. Microfluidic channel with healthy vasculature. (a) Layout of the channel pattern consisted of channels 
with widths of 240 µm, 120 µm, 60 µm, 30 µm, and 15 µm. All sizes in (a) are in millimeters. (b) OCTA en-face MIP 
image of the channel perfused with intralipid solution. (c) and (d) Cross-sectional structure image and flow image of 
the 15 µm capillary network at the location indicated by the red line in (b). Scale bars: 0.5 mm 

 

The en-face vasculature was first binarized through a combination of global thresholding, 

hessian filtering and adaptive thresholding [122] into a binary vessel map (BVM), as shown in 

Figure 3(a). In the BVM, white pixels and black pixels represent the vascularized regions and 

avascular regions, respectively. Then, the BVM was further skeletonized by iteratively shrinking 

the outer boundary of the vascularized regions to a line with a single pixel width [122], as shown 

in the vessel skeleton map (VSM) of Figure 3(b). The contours of the channels could also be 

detected from the BVM through edge detection, as in the vessel perimeter map (VPM) in Figure 

3(c). Once the vessel skeleton and vessel perimeter had been extracted, the vessel diameter could 

be calculated as the summation of radical distances between the skeleton line towards bilateral 

perimeter boundaries, as in the schematic shown as a subfigure of Figure 4.3(d). The searching 

direction is defined by the gradient analysis of the skeleton, as shown in the horrizontal and vertical 
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gradient maps in Figure 3(e) and (f), respectively. Each pixel in the skeleton will generate two 

reversed searching directions. The positive gradients (white) represent radical search towards the 

right in (e) and bottom in (f), and vice versa for the negative gradients (black). Following the 

searching directions, we calculated the minimum distances from the skeleton to its nearest 

perimeter boundary within the diagnoral searching quadrants (i.e. the 2 searching quadrants 

partitioned by grouping the horrizontal and vertical gradients) as denoted by the diagonal hatchings 

in the subfigure of (f), and sumed the two distances originating from the same skeleton pixel as 

one diameter value, as expressed by the following equation: 

𝐷 min
 ∈ ,

𝑥 𝑥 𝑦 𝑦 min
 ∈ ,

𝑥 𝑥 𝑦 𝑦   (4.1) 

where D represents the vessel diameter; (x, y) represents coordinate of a typical pixel in the vessel 

skeleton; (xi, yi) and (xj, yj) represent coordinates of pixels in the vessel perimater map (VPM) and 

belonging to the diagonal searching quadrants 𝑄 and 𝑄, respectively. Then, the calculated vessel 

diameters were applied to the skeletons as a color-coded VSM in Figure 3 (g). As displayed in 

Figure 3 (h), by projecting each vascularized region in the BVM towards its closest vessel skeleton, 

we can apply the color-coded diameter values to the entire vasculature pattern, as in Figure 3 (i). 

The calculated vessel diameters are displayed in parula colormaps and indicated in the colorbars 

in (g) and (i), respectively. Of note, here the diameter is directly measured from the vessel cross-

section perpendicular to the instaneous perfusion flow, rather than the cross-section obtained from 

orthogonal OCT scanning, therefore providing more accurate quantifications of the physiological 

diameters, compared with previous approaches in [123], [129].  
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Figure 4.3. Demonstration of MRD automatic vessel diameter quantification of the healthy vasculature pattern. (a) 
Binary vessel map (BVM). (b) Vessel skeleton map (VSM). (c) Vessel perimeter map (VPM) (d) Overlay between 
the VPM (white) and the VSM (red). A local region is zoomed to demonstrate that vessel diameter is calculated as the 
summation of radical distances between the skeleton line towards bilateral perimeter boundaries. (e) Horizontal 
gradient of the VSM. (f) Vertical gradient of the VSM. The subfigure in (f) shows that practically the diameter is 
calculated as minimum radical distance within the diagnoral searching quadrants. The arrows in (d), (e) and (f) indicate 
the radial searching directions. (g) Color-coded vessel diameter parameters on the VSM. (h) Overlay between the 
BVM (white) and the VSM (red). (i) Color-coded vessel diameter parameters on the BVM. 

 
The conventional way of estimating vessel diameter (i.e. BWBC method) is designed by 

arbitrarily selecting a block of n × n pixels, and calculating the averaged vessel caliber inside [61] 

as: 
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𝐷  
∑ ∑ ,

∑ ∑ ,
     (4.2) 

where Db represents the block-wise vessel diameter, 𝑥 , 𝑦  represents the coordinate of each 

pixel inside the block, ∑ ∑ 𝐵𝑉𝑀 𝑥 , 𝑦  represents the area of the vascularized regions 

(i.e. white pixels in (a)) within the block, and  ∑ ∑ 𝑉𝑆𝑀 𝑥 , 𝑦  represents the total 

lengths of the vessel segments within the block (i.e. white pixels in (b)), where the block size n is 

set as 20 pixels. By applying Eq.(1) to the entire vasculature pattern, a down-sampled block-wise 

diameter map was obtained, which was further interpolated to the original size of 800 × 738 pixels 

and Gaussian filtered with a 3 × 3 kernel to generate a quantitative evaluation map [61]. The locally 

averaged vessel diameters were visulized by integrating this map with binary masks either from 

BVM or VSM [61]. Indubitably, in the block-wise box counting method, the estimated vessel 

diameter is subject to the selected block size and the sample spacing, which requires further 

optimizations for various applications [121]. 

A series of comparisons between conventional BWBC and MRD were made based on the 

healthy vasculature pattern. Figure 4(a) and (c) show the quantified vessel diameters integrated 

with the VSM by using BWBC and MRD, respectively. To test the robustness of two methods, the 

same vasculature pattern was up-sampled two-fold, and the diameters were recalculated following 

BWBC and MRD algorithms, respectively, as shown in the right subfigures of (a) and (c). The 

arrows in (a) indicate that BWBC is subject to the sample spacing, as the block size and Gaussian 

filter in BWBC don’t take vessel morphology into consideration. MRD still provided equivalent 

results after up-sampling, as indicated by the arrows in (c), with the regional diameter distributions 

visualized in the color-coded BVM as in Figure 4(b) and (d), respectively. The accuracy and 

consistency of MRD are superior to that of BWBC when quantifying single vessel branches, as 
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shown in the vessels with the same diameter of 120 µm indicated by the red dash boxes in (b) and 

(d).  

 
Figure 4.4. Comparison between block-wise box counting (BWBC) and calculation of minimum radical distance 
(MRD) based on the healthy vasculature pattern. (a) Vessel diameters integrated with VSM by BWBC. (b) Vessel 
diameters integrated with BVM by BWBC. (c) Vessel diameters integrated with VSM by MRD. (d) Vessel diameters 
integrated with BVM by MRD. In (a) and (c), the diameters of up-sampled (× 2) vasculature patterns are zoomed as 
shown in the right subfigures. The arrows indicate that BWBC is subject to the sample spacing, while MRD is still 
robust after up-sampling. In (b) and (d), the channels with the same diameter (120 µm) are marked by red boxes that 
reveal the superiority of MRD in quantification accuracy and consistency.  
 

Additionally, we analyzed the vessel diameters of two patterns mimicking ischemic vasculature: 

both with ~ 1/6 loss of capillaries compared with the healthy vasculature, but one with 

thoroughfare channels (60 µm) and another one with vessel dilation (doubled vessel diameter at 

the central zone). For the first pattern, the layout of microfluidic design and corresponding OCTA 

MIP image are displayed in Figure 5 (a) and (b). The vessel diameter map integrated with VSM 

and that integrated with BVM by either using conventional BWBC or using MRD are shown in 

Figure 5 (c) and (d), and (e) and (f), respectively. Similarly, for the second pattern, the layout of 

the microfluidic design, the OCTA MIP image, the vessel diameter map integrated with VSM, and 

that integrated with BVM by either using BWBC or MRD are displayed in Figure 5 (g) - (l). 
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Visually, both BWBC and MRD detect the vessel diameter changes either in the thoroughfare 

channels or in the dilated capillaries. However, as indicated by the red dash boxes in (d) and (j), 

the distribution of quantified diameters appears to be shifted for the BWBC algorithm due to the 

rotation of the obtained OCTA vasculature patterns (~ 3°). In contrast, MRD exhibited high 

tolerance to pattern rotation, as indicated in (f) and (l). 

 

Figure 4.5. Comparison between block-wise box counting (BWBC) and calculation of minimum radical distance 
(MRD) based on two ischemic vasculature patterns. (a) Layout of the ischemic vasculature with thoroughfare channels. 
(b) OCTA en-face MIP image of the pattern in (a). (c) and (d) the diameter maps of vessels in (a) integrated with VSM 
and integrated with BVM, as calculated by BWBC. (e) and (f) the diameter maps of vessels in (a) integrated with 
VSM and integrated with BVM, as calculated by MRD. (g) Layout of the ischemic vasculature with vessel dilation. 
(h) OCTA en-face MIP image of the pattern in (g). (i) and (j) the diameter maps of vessels in (g) integrated with VSM 
and integrated with BVM, as calculated by BWBC. (k) and (l) the diameter maps of vessels in (g) integrated with 
VSM and integrated with BVM, as calculated by MRD. During OCT imaging, the vasculatures in (a) and (g) are 
rotated counter-clockwise by ~3°. All sizes in (a) and (g) are in millimeters. In (d) and (j), the red squares indicate 
regions that are affected by the rotation of vasculature patterns, while MRD proves high tolerance to the rotation as 
indicated in (f) and (l).  
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4.4. Automatic vessel tracing  

To trace the vessel branches and accordingly calculate the mean diameter of each branch, we first 

automatically detected the bifurcations, as indicated by the green dots in Figure 4.6 (b), by applying 

the following searching equation to each skeleton pixel:  

𝑉𝑆𝑀 𝑥 𝑖, 𝑦 𝑗 4 ∩ 𝑉𝑆𝑀 𝑥, 𝑦  

where 𝑉𝑆𝑀 𝑥, 𝑦  represents a typical pixel of the vessel skeleton, and 𝑉𝑆𝑀 𝑥 𝑖, 𝑦 𝑗  

represents its neighbor pixels. The criterion 4 is assigned according to an observation that the 

bifurcation point has more neighbors ( 3) compared with the midpiece (neighbor 2) or the 

terminal (neighbor 1), as representatively indicated by bifurcations a, b and c compared to 

midpieces d, e and f in (b). For this microfluidic pattern, some corners (e.g. g and h in (b)) were 

mistakenly detected as bifurcations due to slight skeletonization artifacts for 90 degree corners. 

Fortunately, those false positive bifurcations will only add vessel segments but not affect the 

tracing results. Since we extract all the bifurcations, we can automatically trace between any two 

of them for an overview of the entire vasculature. Practically, however, in clinical scenarios 

physicians may only care about a small number of branches along a single vessel tree. For this 

reason, a bifurcation and 3 of its connected branches (yellow dot: starting; red dots: ending) within 

the red dash box in (c) are selected for demonstration of the tracing process.  

As blood flow always travels through the shortest (lowest-resistance) path between two 

bifurcations, vessel tracing was conducted using an A* path searching algorithm [137]. A* applies 

an informed searching on all accessible paths to find the one that incurs the smallest cost (least 

distance travelled in this study). Specifically, A* iteratively selects the path (pixels of the vessel 

skeleton) that minimizes  

𝑓 𝑚 𝑔 𝑚 ℎ 𝑚       (4.4) 
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where m is the latest selected pixel, 𝑔 𝑚  is the distance travelled from the starting, ℎ 𝑚  is the 

heuristic that estimates the cost of the cheapest path from m to the ending. According to the design 

of the A* algorithm, the heuristic must never overestimate the actual distance to the ending. Here 

ℎ 𝑚  was assigned as the straight-line distance (Euclidean distance) that satisfies this criterion. In 

𝑔 𝑚 , each step towards the edge-connected neighbors would be counted as 1, and that towards 

the diagonal-connected neighbors as √2. The searching process is visualized as movie frames in 

Figure 6(d): (1). initialization of the starting; (2)-(4). tracing towards three surrounding endings, 

respectively; (5). automatic re-initialization of a new starting at downstream.  

By integrating the tracing with BWBC- and MRD-based vessel diameter maps in Figure 4(a) 

and (c), we calculated the mean diameters of ten vessel branches as marked in numbers in Figure 

7(a) and listed in Figure 7(b). To analyze the quantification errors with respect to the true diameter 

values from the designed layout, we employ two evaluation parameters: the total error and the 

variance of error as defined by 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 ∑|𝐷 𝐷 |      (4.5) 

𝑉𝑎𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 ∑ |𝐷 𝐷 | ∑|𝐷 𝐷 |      (4.6) 

where 𝐷 represents the quantified diameter, 𝐷  represents the true value, N represents number of 

the vessel branches (N = 10). The total error suggests that BWBC is more prone to errors (~ 3 

times) compared with MRD. The variance of error reveals that the stability of the diameter 

quantification by BWBC is much worse than that of MRD. 
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Figure 4.6. Demonstration of automatic vessel tracing based on the healthy vasculature pattern. (a) Vessel skeleton 
map same as Figure 3(b). (b) The detected bifurcations (green dots) overlaid on the vessel skeleton map. (c) Selection 
of starting (yellow dot) and ending (red dot) of each vessel branch. (d) Frames taken from an automatic tracing movie 
of the region marked by a red square in (c): (1). Initialization of the starting; (2)-(4). Tracing towards 3 endings, in 
which red arrows indicate the tracing direction; (5). One of the downstream ending is automatically re-initialized as 
the starting.  
 

 

 
Figure 4.7. (a) OCTA MIP image of the healthy vasculature pattern same as Figure 2(b), in which numbers 1-10 
indicate ten branches of a vessel tree. (b) The true vessel diameters of the ten branches, the calculated mean diameters 
by integrating automatic vessel tracing with BWBC, and the calculated mean diameters by integrating automatic vessel 
tracing with MRD. The quantification errors are analyzed as total errors and variances of error for BWBC and MRD, 
respectively. 
 



www.manaraa.com

67 
 

4.5. Quantitative morphological evaluation of cerebral vasculature in vivo 

The automatic vessel diameter quantification and automatic vessel tracing were integrated to 

evaluate vessel diameters in mouse cerebral cortex in vivo. Figure 8(a) shows the microscope 

image of the mouse cerebral cortex through a transparent cranial window. Correspondingly, we 

acquired the OCT dataset and extracted the OCTA angiogram (the top 5-µm/1-pixel from the tissue 

surface) as in Figure 8 (b), where the bifurcations in a superficial vein up to 7 generations are 

labelled in alphabetical order. First, the angiogram was binarized and skeletonized as Figure 8 (c). 

Thereafter, the bifurcations were automatically detected as green dots in Figure 8 (d). To ensure 

the robustness of vessel tracing within this in vivo dataset, vessel fragments with low connectivity 

were excluded from analysis from (c) to (d). In (d), the alphabetically labelled bifurcations are 

marked as starting (yellow dots), whose surrounding bifurcations are marked as ending (red dots) 

to trace along each vessel branch. Next, the vessel diameter information was integrated with VSM 

through BWBC as in Figure 8 (e), and through MRD as in Figure 8 (f). In BWBC, the block size 

n was reset as 10 pixels to match the lateral samping of 400×400 pixels.  
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Figure 4.8. (a) The microscope image of mouse cerebral cortex through a cranial window. (b) OMAG en-face view 
image of the surface vasculature. The selected bifurcations up to 7 generations are labelled in alphabetical order, in 
which (d, e, f, g) and (d’, e’, f’, g’) correspond to bifurcations of two big branches on the same level. (c) Vessel 
skeleton map. (d) Bifurcations (green dots) are automatically detected from the skeleton, in which selected bifurcations 
in (b) are marked as yellow dots, and the surrounding red dot indicates the ending of each connected vessel branch. 
(e) Vessel diameters integrated with VSM by BWBC. (f) Vessel diameters integrated with VSM by MRD.  

 

It is conceivable that analysis of vessel diameters at bifurcations is relevant to the understanding 

the partition of cerebral blood flow in flow-related pathological changes, such as cerebral venous 

thrombosis [138] and venous insufficiency [139]. The mean diameters of vessel branches that are 

automatically measured through MRD plus vessel tracing are listed on the OCTA angiogram in 

Figure 9(a). For comparison purpose, the same branches were also evaluated through BWBC plus 

vessel tracing, and manually measured by one skilled technician specializing in OCTA imaging 

(diameter values from these two methods are not listed). Additionally, we introduced two indexes 

to evaluate the relations in diameters between the parent and the child branches at each bifurcation. 

The first index is generalized as a cubic dependence as calculated by Cubic ∑ 𝐷 /𝐷  
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(where Di represents the diameter of each child branch, and D0 represents the diameter of the parent 

branch). According to Murray’s law [140]–[142], this cubic dependence should be close to 1, such 

that the cost for blood transport and maintenance are minimized. The second index is described by 

the area ratio of vessel calibers (square dependence) as calculated by Square ∑ 𝐷 /𝐷 . In 

our analyses, these two indexes are calculated for each vessel branch and for each measurement 

approach, as listed in Figure 9 (b) and (c), respectively. The mean cubic dependences obtained 

from manual measurement (0.978±0.033) and MRD (1.026±0.116) are close to the theoretical 

standard of 1 that following Murray’s law. And, the mean square dependences obtained from 

manual measurement (1.245±0.056) and MRD (1.247±0.131) are within the range of 1.10 - 1.28 

reported for cerebral vessels in the literature [128], [133], [142]. However, significant systematic 

errors exist in the results from BWBC (1.201±0.187 for cubic dependence and 1.401±0.157 for 

square dependence).  

 
 
Figure 4.9. (a) OCTA angiogram with labeled mean vessel diameters (cyan) quantified through MRD plus vessel 
tracing. (b) Cubic dependences ∑ 𝐷 /𝐷  measured with manual measurement, BWBC, and MRD, respectively. 
(c) Square dependences ∑ 𝐷 /𝐷  measured with manual measurement, BWBC, and MRD, respectively. In (b) 
and (c), each dot represents an individual bifurcation, and the horizontal bar represents the mean with standard 
deviation. 
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To enable a thorough morphological evaluation of the cerebral vasculature, vessel tortuosity 

and vessel branching angle were automatically measured after vessel tracing. The length of the 

vessel branch was measured with each step towards the edge-connected neighbors as 1, and that 

towards the diagonal-connected neighbors as √2. The vessel tortuosity can then be calculated as 

the vessel length divided by the straight-line distance between two bifurcation points. The 

measured tortuosities of two arterio-arterial anastomosis vessels are 1.142 and 1.129, as in Figure 

10(a) and (b) respectively, within the reasonable range in literature [125]. The vessel branching 

angle is obtained by selecting the first 10 pixels from each child branch, fitting them to linear 

approximations, and then calculated by: 

𝑎𝑛𝑔𝑙𝑒 atan      (4.7) 

where atan represents the calculation of arc tangent angle, k1 and k1 represent the fitted slopes of 

the instantaneous flow directions for two child branches. As this slope-based calculation doesn’t 

account for angle orientation, we additionally use the length of the selected vessel segments to 

differentiate between acute angle or obtuse angle:  

𝑎𝑛𝑔𝑙𝑒
atan                 𝑖𝑓 𝐿 𝐿 𝐿

180° atan    𝑖𝑓 𝐿 𝐿 𝐿
   (4.8) 

where L01 and L02 are the line distances of the 10th pixels in two branches from the starting; L12 is 

the straight-line distance between the two 10th pixels. The automatically measured branching 

angles are listed in Figure 10(c) - (f), with the data demonstrating that our algorithm performs well 

throughout a range of different angle orientations, including both acute and obtuse branching 

angles. 



www.manaraa.com

71 
 

 
 
Figure 4.10. (a) and (b) vessel tortuosity analyses of 2 arterio-arterial anastomosis vessels. Red curve: traced vessel 
branch. (c) - (f) Analyses of branching angles toward four different orientations. Yellow line: linear fitted 
instantaneous flow direction from the first 10 pixels of each branch. Yellow dot: starting. Red dot: ending. 
 

The demonstrated methods and additional quantitative parameters of the vasculature pattern 

including vessel area density [61], vessel skeleton density [61] and vasculature fractal dimension 

[143] have been integrated into a comprehensive GUI vasculature analysis platform, which is 

written by PyQt5 and Python 3.6. Please refer to the supplementary file (video 1) for more details 

about the operation flow. 
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Figure 4.11. GUI OCT angiography vasculature analysis platform. 

 

4.6 Discussion and conclusions 

In this paper, we present an innovative approach for analyzing OCTA images through automatic 

vessel diameter quantification and automatic vessel tracing. The diameter is obtained by gradient-

guided measurement of the mimimum radial distance between the vessel skeleton and the vessel 

perimeter. We prefer to calculate the MRD, instead of calculating the curvature of skeleton 

segments and radially searching/counting pixel numbers, for the following two reasons. (1) 

calculating curvature is practically more complicated and inconsistent. For instance, the calculated 

curvature dramatically fluctuates for the segments shown in the blue boxes in Figure 4.12 (zoomed 

subfigure). (2) The radical search may severely overestimate the vessel diameters at the corner or 

branching regions. For example, in Figure 4.12 (zoomed subfigure) the quantified diameter by 
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MRD (yellow) can be overestimated as the length of vessel segment (green line), if radical 

searching is directly applied.  

 

Figure 4.12. The preference of MRD over curvature guided radical searching. Blue boxes: the vessel segments in 
which the calculation of curvature is inconsistent. Yellow line: the quantified diameter at the branching region by 
MRD. Green line: the overestimated diameter at the branching region by curvature guided radical searching. 
 

In the diameter quantification, one limitation exists for vessels with 90 degree corners as 

indicated in Figure 13(a), where the maximum overestimate can be ~20%. However, 1) this 

overestimate only occurs within a restricted small region, and even within this region the 

overstimate decreases rapidly following 1 cos 𝜃 /2cos 𝜃 , where 𝜃  is the off-set angle 

between the radical line and the horizontal line (or its complement angle if it’s larger than 45°), as 

schematically shown in (a); 2) in vivo, vessels bend at angles much smaller than 90 degree, in order 

to maintain smooth blood flow. During vessel tracing, an A* path searching algorithm was applied 

to the skeletonized vessels. However, as representativly indicated by the blue circles in Figure 

13(b) - (c), the vessel skeletonization may fail at regions where large vessels are branching. 

Therefore, the traced skeleton pixels should be excluded from analysis if located within a given 

distance from the bifurcation center. In practice, this distance is designed as the maximum radius 

of connected vessel branches (i.e. half of the blue dashed lines in (b)). This is analogous to the 
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analysis of conventional microscopic images, where care is generally taken to avoid measurements 

very close to the branching points [133].  

 
 
Figure 4.13. Limitation analyses of the proposed diameter quantification and vessel tracing. (a) Redisplayed figure 
same as Figure 4.3(i), in which a 90 degree corner is zoomed for error calculation. D: quantified diameter; Dt: true 
diameter; 𝜃: off-set angle between the radical line and the horizontal line. (b)-(c) Redisplayed figures same as Figure 
8(b) and (c), in which the blue circle indicates a representative region removed from quantification due to poor vessel 
skeletonization. In (b), the blue dash line indicates the diameter of the circle which is equal to the maximum diameter 
of connected vessel branches.  
 

In addition to the algorithms, the use of imported OCTA images for vessel characterization has 

its own limitations. Due to the restricted lateral resolution of the OCT system, the diameters of 

small capillaries are likely overestimated to some extent. Despite this limitation, we demonstrated 

that our algorithm quantifies changes in vessel diameter down to a single vessel branch, with a 
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degree of accuracy appropriate for clinical use, as visulized in the abnormal cases in Figure 4.5(f) 

and (l) compared with the healthy one in Figure 4.3(i). Other techniqual developments including 

using optical coherence microscopy [144] or adaptive optics OCT [145] would provide 

representation of the vasculature with higher resolution, and therefore improve quantification 

accuracy. 

For the clinical use of our algorithm, the computation cost/time is another important parameter 

to consider. Vessel diameter quantification and vessel tracing was performed in Python 3.6 on a 

Dell Pression T7500 with an Intel Xeon E5507 CPU (1 of 4 cores were used). The time cost of 

diameter quantification was ~ 3 s for the microfluidic device and ~ 5 s for the brain vasculature; 

the vessel tracing cost was ~1 s for all branches listed in Figure 4.9(a). Further improvements can 

be achieved by using parallel processing with multiple CPU-cores, or alternatively adopting a GPU, 

which would reduce the computation time exponentially.  

In conclusion, we developed an automated framework to quantitatively characterize vessel 

diameters down to individual capillaries. We validated our algorithm, and compared it to a 

clinically well-accepted method, by imaging and quantifying microfluidic flow phantoms with 

known vascular parameters. Compared with the currently clinically accepted method, our approach 

quantified vessel parameters with superior consistency, accuracy, and a high tolerance to 

deviations in vessel orientation. We used an A* algorithm to trace vessel branches, and accordingly 

calculate the mean diameter of each vessel branch. The heuristic A* algorithm provides an 

effective and efficient way to get positional information for individual vessels down to the 

capillary level. Finally, the proposed algorithms were applied to extract vessel parameters from 

the mouse cerebral vasculature in vivo, including vessel diameter, tortuosity, and branching angle, 

which agreed well with findings in the literature. Our algorithmic approach is highly adaptable, 
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and can easily be extended to other imaging modalities such as two-photon fluorescence 

microscopy and photoacoustic microscopy, making it of potential interest for use in multiple 

clinical settings.   
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5. Summary and related future plans 
 

5.1. Summary 

In this thesis, we developed multifunctional OCT cerebral angiography techniques, including 

systems, scanning strategies and algorithms, to map the vasculature network and quantitatively 

analyze the capillary hemodynamics within mouse cerebral cortex. The whole thesis is divided 

into three parts. Firstly, we applied the state-of-art OCT capillary velocimetry to explore the 

capillary transit characteristics mainly represented by mCTV, TFB and variations within such upon 

electrical stimulation, and accordingly interpreted the hemodynamic mechanisms in neurovascular 

coupling and the metabolic benefits of functional hyperemia (chapter 2). This will expand current 

understandings about the cerebral microcirculation and contribute to the development of 

quantitative OCT for brain imaging in the OCT community. Secondly, we designed an OCT 

penetrating vessel mapping approach allowing for rapid and automatic identifications of cerebral 

penetrating vessels from large volume datasets, free from the tailing artifacts that is inevitable in 

other approaches. We then combined this method with other OCT techniques (including OCT 

angiography and capillary velocimetry discussed in chapter 1) for comprehensive evaluation of 

the cerebral vascular hierarchy (chapter 3). This fills in the gap where effective penetrating vessel 

mapping is still missing, when angiography techniques for the surface and subsurface vasculature 

are maturing. Thirdly, we demonstrated a comprehensive vasculature analysis framework for the 

morphological investigation of the cortical surface vessels, with newly designed methods for 

vessel diameter measurement and vessel tracing (chapter 4). The proposed algorithms were used 

to extract quantitative vascular matrixes from the in vivo OCT angiography results, including 

vessel diameter, tortuosity, branching angle, et al, accelerating the clinical translation of OCT 

angiography in a more quantitative manner.  
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5.2. Future plan 

For the first part, in the future, a rigorously investigation of the correlations in capillary transit 

parameters need to be carried out. However, the regulation of capillary blood flow in mouse 

cerebral cortex is extremely complex, and is additional affected by the experimental conditions, 

e.g. the dosage for isoflurane anesthesia. In order to minimize the effect of isoflurane anesthesia, 

we may need to switch to Ketamine injection or even imaging the awake mice with the recently 

renewed lab protocol. This can be difficult and requires long-term efforts. Another research 

development is incorporating the electrical stimulation with mouse cortex at abnormal states, for 

instance the aged brain or the one with ischemia stroke, to investigate the therapeutic benefits of 

functional hyperemia and their correlations with the capillary transit parameters. Specific aims are 

listed as follows: 

Aim 1: Apply the established quantitative correlation analysis in chapter 2 to study the capillary 

transit parameters of aged mouse subjects (24-month-old) before and during electrical stimulation; 

compare the mCTV, TFB and variations within such between the young (data shown in 2.3.1 – 

2.3.5 in chapter 2) and the old in the activated somatosensory cortex region. The objective is to 

see if aging has negative effects on the neurovascular coupling and associated hemodynamic 

responses in brain. 

Aim 2: Apply the established quantitative correlation analysis in chapter 2 to study the capillary 

transit parameters of mouse subjects (2-month-old) after dMCAO stroke; compare the mCTV, 

TFB and variations within such before and during electrical stimulation in the activated 

somatosensory cortex region. The objective is to see if the metabolic benefits of functional 

hyperemia lead to a therapeutic hemodynamic response in stroke. 
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For the second part, although our PVM technique shows some tolerance to the vessels with 

imperfect perpendicular penetration (please see 3.4 in chapter 3 for details), the exact degree of 

tolerance is still unclear. One of the future work will be 3D printing microfluidic channels to mimic 

the cerebral hierarchical angioarchitecture for a systematic tolerance test. Another plan is resolving 

the directional information in the penetrating vessel map, i.e. distinguishing between penetrating 

arterioles and ascending venules, by utilizing the phase information in the complex OCT signal. 

Preliminary results about this direction-resolved PVM have revealed decent feasibility but the 

method requires more mathematical analysis and optimization. Specific aims are listed as follows: 

Aim 1:  Print 3D microfluidic channels to mimic hierarchical cerebral vasculature, in which 

penetrating channels should have multiple tilting angles (0°, 10°, 20°, 30°, 40°, 50°) and channel 

sizes (30 µm, 50 µm and 100 µm); image the channels with intralipid (1%) flowing inside; and 

resolve penetrating vessel patterns through the method proposed in chapter 3; quantitatively 

analyze the correlations between penetrating vessel areas and the tilting angles / channel sizes. 

Aim 2: Develop add-on algorithms to distinguish penetrating arterioles and ascending venules by 

utilizing the phase information in the complex OCT signal. 

For the third part, we will continue to build an OCT/OCTA package fully written by Python 

(with documented multi-functional libraries and multi-module GUI platforms), which integrates 

the SD-OCT data acquisition, the OCTA raw-data processing and the OCTA vasculature analyses.  

Apart from the plans related to the studies of cerebral vasculture in chapter 2 – 4, we have an 

entire new project on-going for the quantification of the subcellular motion of neuron cells in brain 

in vivo. The basic concept of the project is resolving subcellular dynamics from variations of OCT 

signal with relatively low-resolution optics. Some of the preliminary results will be discussed in 

the next chapter. 
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6. Future project: Dynamic imaging and quantification of subcellular motion 
in cortical brain with eigen decomposition OCT variance analysis 

 

Purpose of this project: Characterize the cortical cell dynamics by 1) developing a high-sensitive 

approach to resolve OCT signal variations stemming from subcellular motion; 2) validating the 

proposed method with cell phantoms; 3) applying the developed algorithm to investigate the 

cortical cells in vivo.  

 

6.1. Introduction 

The measurement of subcellular motion provides a convenient and effective means in the 

evaluation of cell metabolism and testing the responses of cells to pathogens and drugs in 

pharmaceutics [146][147]. Over the past decades, numerous optical imaging techniques have been 

explored to non-invasively assess the subcellular dynamics, typically through the measurement of 

spatial and temporal subcellular behaviors [148]. Fluorescence correlation spectroscopy has been 

used to quantify the diffusive properties in the cells through evaluating the autocorrelation of 

fluctuations in fluorescent signals [149]. Without a need for exogenous agent, phase contrast 

microscopy and quantitative phase microscopy have been extensively utilized to investigate 

subcellular dynamics by resolving optical phase changes due to cell growth, metabolism, and 

volume/mass changes [150]–[152]. However, the limited field of view and the relative low 

throughput limit their applications toward massive drug screening in pharmaceutical engineering. 

OCT has emerging as an invaluable tool for 3-dimensional imaging of biological tissues/cells 

through highly-scattering medium with cellular level resolution, high throughput and high 

efficiency [153]. Since the OCT signals from static tissue structures are relatively constant, the 

motion signal of interest can be isolated by time varying measurement (i.e. time lapse acquisition) 
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together with dynamic processing methods. The conventional processing methods include 

standard deviation (STD) [146], [154], differentiation [6], [155] or decorrelation [156], [157] of 

signal intensities. As only the intensity is utilized here, these methods may not be sensitive to 

subtle phase changes in the OCT signals. Recently, more and more attention has been paid to the 

sensitivity advantages of complex dynamic processing where both the signal intensity and phase 

are utilized to assess the dynamics [11], [121]. Lee et. al proposed a dynamic light scattering OCT 

(DLS-OCT) using complex autocorrection and subsequent mathematical modeling to study 

particle motions [158], [159]. Farhat et. al investigated the DLS-OCT signal to infer the 

intracellular dynamics as cells underwent apoptosis [160]. Very recently,  the use of 

complex/phase decorrelation of the OCT signal was demonstrated to improve the imaging contrast 

[161], which has been explored to detect random motions in cornea tissue samples [162]. 

In this chapter, we report the development of an innovative approach to contrast subcellular 

motions by using eigen decomposition (ED) based variance analysis of time-varying complex 

OCT signals. With comparative test on abiotic phantoms made of intralipid and gelatin of different 

concentrations, the ED based method reveals superior sensitivity to the dynamic signal (i.e. higher 

contrast to noise ratio (CNR) [6]) compared to that of intensity-based decorrelation (ID) analysis. 

We then test the proposed approach on purposely patterned samples of yeast powder mixed with 

gelatin/TiO2 water solution to demonstrate the ED analysis in revealing subcellular dynamics of 

yeast cells. To evaluate the decay of complex signal variation, we describe a method to quantify 

the power of uncorrelated static and dynamic components with the eigen values from ED analysis. 

Finally, the method is applied to image mouse cerebral cortex in vivo, in normal state and when 

suffering from ischemic stroke, suggesting the potential ability of ED variance analysis to 

investigate cortical neural activities. 
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6.2. Materials and methods 

6.2.1. OCT system setup 

A phase-stable spectral domain OCT system was utilized, similar to that described in [163]. In 

brief, the system worked at a center wavelength of 1310 nm and a spectral bandwidth of 110 nm, 

providing an axial resolution of ~ 7 μm. In the sample arm, a 10X objective lens was employed, 

which provided a lateral resolution of 7 μm at full width of half maximum. With incident light 

power of 3.5 mW, the system sensitivity was measured to be ~105 dB. The phase stability of the 

obtained interference OCT signal was optimized to be ~1.5 mrad, providing a sub-nanometer-scale 

displacement sensitivity (~ 0.16 nm in air). The imaging was operated following multiple designed 

BM-mode (i.e., repeated B-scans over time) and MB-mode (i.e. B-scan is completed by stepped 

A-lines, with each step consisting of repeated A-lines over time) scanning protocols. The sampling 

rate of BM-mode imaging was kept at 180 fps, and that of the MB-mode imaging was 20 kHz. The 

acquisitions at short time scale that dominated by Brownian motion promise the detection of 

subcellular dynamics with negligible cellular migration or reorganization [146].  

 

6.2.2 Sample preparations, scanning protocols and data processing 

We respectively designed 3 individual experiments for 1) demonstrating the sensitivity advantage 

of ED algorithm performed on the complex OCT signals of abiotic phantoms; 2) validating the 

ED-based imaging and quantification of subcellular dynamics in yeast cells; 3) demonstrating the 

in vivo application of the ED quantification on monitoring cortical cell necrosis after stroke. 
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6.2.2.1 Phantom experiment for sensitivity test 

The first set of experiments were designed to demonstrate the sensitivity advantage of the complex 

ED algorithm [34]. For what follows, we refer this set of experiments to Experiment I for brevity. 

Here, we sought to use more controllable abiotic phantoms for the reason that it is difficult to 

directly employ cells whose activities are sensitive to temperature, humidity, pH et al. In the 

preparation, a series of phantom samples were fabricated with a constant concentration of intralipid 

scattering particles (particle diameter of ~0.5 μm) but with a varied degree of gelatin 

concentrations, in which the dynamic behavior of suspended intralipid was used to mimic pedesis-

like subcellular dynamics [160]. Specifically, 0.04% titanium dioxide (TiO2) was mixed with 25% 

gelatin to mimic the scattering background. At the front side of the background tissue, cone-shape 

holes were drilled side by side to form solution reservoirs. Next, distilled water and various amount 

of gelatin powders were blended and heated in a water bath at ~80 °C for 20 min and stirred 

periodically to prepare gelatin solutions with weight concentrations of 0%, 1%, 2%, 4%, 6%, 7%, 

8%, 9%, 12% and 15%, respectively. When the solution samples cooled down to 60 °C, 0.2 mL, 

each was taken to mix with 0.2 mL 2% intralipid solution, and then poured into the prepared 

reservoirs and allowed to solidify for 3 min. The phantoms thus prepared were finally subjected to 

OCT imaging. 

In this experiment, we acquired 3D OCT scans from each phantom for later data processing to 

demonstrate the sensitivity advantages of ED based algorithm. Each 3-D scan was comprised of 

400 B-frame positions, 8 frame repetitions at each B-scan position, and 400 A-lines in one B-frame, 

covering a field of view of 5 × 5 mm. The pedesis-like motions were detected by applying ED [34] 

and ID [33] analyses, respectively, and the extracted dynamic signals were then projected onto the 

en-face plane through maximum intensity projection (MIP). For comparison purpose, the contrast 
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to noise ratio (CNR) of resulting images were calculated with respect to each gelatin concentration 

as [161]:  

𝐶𝑁𝑅 𝜇 𝜇 / 𝜎 𝜎 ,      (6.1) 

where μs and σs are the mean and STD of the signal region of interest (typically a region in the 

middle of FoV with a radius = 1 mm), and μb and σb are the mean and STD of the surrounding 

background region (2 mm < radius < 2.5 mm, which is outside of the intralipid contained reservoir). 

 

6.2.2.2 Yeast experiments to mimic subcellular dynamics 

To validate the proposed quantitative ED variance analysis, we prepared and imaged yeast cells, a 

highly-polarized cell type that is particularly sensitive to mitochondrial activities [164]. The yeast 

phantom was designed by 1) filling the cement-like yeast/gelatin/TiO2 mixture (15% yeast, 15% 

gelatin, 0.04% TiO2) into the carved gelatin/TiO2 (15% gelatin, and 0.04% TiO2) solid background; 

2) adding yeast powder suspension (15% yeast) into the 60 °C water solution containing 15% 

gelatin and 0.04% TiO2. Two different yeast phantoms were prepared for this set of experiments 

(Experiment II) (please see justification in the Results and discussion). The phantoms were imaged 

after allowing 5 hrs for full solidification.  

The phantom was first imaged by a 3D scan mode, which was comprised of 1000 B-frame 

positions, 16 frame repetitions at each B-frame position, and 400 A-lines in one B-frame, covering 

a field of view of 3 × 7.5 mm. The subcellular dynamics were detected by using ED only and en-

face projected through MIP. Additionally, as shown in Figure 6.1(a), BM-mode scanning of 200 

A-lines and 1800 frame repetitions, and MB-mode scanning of 600 A-line repetitions and 200 

positions, were respectively adopted to image the yeast and gelatin/TiO2 phantoms. The data 
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processing flow chat is displayed in Figure 6.1 (b)-(e), and illustrated respectively as following 

steps (i)-(iv):  

(i), Every two complex A-line samples (A1, Aτ) with time-varying intervals (τ = Δt, 2Δt … (N-

1)Δt) were grouped as a cluster (Figure 6.1b).  

(ii), A 2 × 2 covariance matrix (Rc) was then obtained via normalized multiplication between 

the conjugate transposed cluster and the cluster itself: 

𝑅
𝐴∗

𝐴∗ 𝐴  𝐴   
𝐴∗ 𝐴 𝐴∗ 𝐴
𝐴∗ 𝐴 𝐴∗ 𝐴   

𝑣𝑎𝑟 𝐴 𝑐𝑜𝑣𝑎𝑟 𝐴 , 𝐴
𝑐𝑜𝑣𝑎𝑟 𝐴 , 𝐴 𝑣𝑎𝑟 𝐴    (6.2) 

in which, * represents the complex conjugate, T represents the transpose, and M is the number of 

depth samples in each A-line.  

(iii), Because the static structure and the pedesis-like random dynamics are linearly uncorrelated, 

the static and dynamic components can be separated by minimizing the intergroup correlations. In 

doing so, the ED diagonal transformation was utilized where the covariance matrix (Figure 6.1c) 

is projected onto orthogonal (linearly uncorrelated) direction that optimizes the difference between 

the two components as in: 

𝑅   𝐸 Ʌ 𝐸 ∗  𝐸
𝜆 0
0 𝜆

𝐸 ∗     (6.3) 

where Ʌ is the transformed diagonal matrix, in which the first eigen value (λ1) represents the power 

of static component since structure information dominates in OCT signals, and the second eigen 

value (λ2) represents the power of dynamic component (Figure 6.1d). E is a 2 × 2 matrix of eigen 

vectors that represents the transformation coefficients. 

(iv), Finally, the dynamic motion was evaluated by the ratio of the static power to the total 

power along time axis. According to the dynamic behavior of Brownian particles in which the 

fraction of static particles approximately follows exponential decay [165], this static power ratio 
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(PRτ) should decline exponentially, which thus provides a quantitative assessment of motion 

signals through the fitted damping coefficient (Г), as expressed by the following equation [165]: 

𝑃𝑅    𝐶 exp 𝛤 𝜏     (6.4) 

where PR is the power ratio, and C is the peak static power ratio that approximately equals to 1. 

As a negative decay coefficient, the faster the decay rate, the lower the Г will be. Figure 6.1(e) 

shows a decline curve of a representative gelatin/TiO2 phantom (15% gelatin and 0.04% TiO2), 

and an exponentially fitted dash curve with Г = -0.055 /s, C = 1.04, and coefficient of determination 

R2 = 0.98 (Figure 6.1e). 

 
 

Figure 6.1. Imaging and data processing of power analysis of complex OCT signals. (a) Representative BM-mode 
scanning protocol where the B-scan (consisting of 200 A-lines) was repeatedly scanned by N times. (b) Every two 
samples with time-varying intervals are grouped as a cluster. (c) Calculation of correlation matrix between two 
samples in a cluster. (d) Complex eigen decomposition that optimizes the differentiation between two groups: static 
and dynamic, in which the eigen value is used to evaluate the power of each group. (e) Power analysis by calculating 
the ratio of static eigen value to the total power over time from ED processing. Solid curve is the static power ratio 
evaluated from a representative gelatin/TiO2 phantom (15% gelatin and 0.04% TiO2) against the time frames (~ 35 s), 
and a dash curve shows the exponentially fitted decline of the power ratio. N: temporal sample number; Δt: time 
interval; τ: time; λ: eigen value; PR: static power ratio; C: fitted peak static power ratio, Г: fitted damping coefficient, 
R2: fitting coefficient of determination. 
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6.2.2.3 Animal brain imaging in vivo 

In Experiment III, a 2-month C57BL/6 mouse subject to ischemic brain injury (i.e., stroke) was 

used to demonstrate the potential in vivo application of the proposed method to cortical tissue 

integrity. The animal handling follows the same procedures as described in [163], which had been 

reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of 

University of Washington. In short, the mouse was initially prepared through an open-skull cranial 

surgery above the somatosensory cortex. Then, at the same location, a regional ischemic injury 

[166] were surgically induced with occlusion of the middle cerebral artery, which subsequently 

led to cortical cell necrosis due to the inhibition of cell activities caused by the injury.  

In this experiment, to balance the spatial-temporal sampling and the total acquisition time for 

in vivo imaging, MB-mode scans at 400 × 400 positions and 50 A-line repetitions at each position 

were acquired for each 3-D dataset, covering a field of view of 3 × 3 mm. The ED variance analysis 

of A-lines was the same as in Experiment II. Meanwhile, in order to focus on the neural activity, 

the blood flow information at each cross-section was removed by taking the OCT angiography 

cross-section (including all arterioles, venules and capillaries) as a mask [121]. The exclusion of 

flowing scatters ensures that the detected signals are mainly contributed by cerebral tissue 

dynamics, which may include those from neuronal or other cell types such as glial cells, astrocytes 

etc.  

 

6.3. Results and discussions 

6.3.1 Complex ED reveals superior sensitivity to dynamics 

Figure 6.2(a) shows the photograph of the motion phantoms fabricated for Experiment I. The en-

face OCT structural images of reservoirs filled with gelatin/intralipid of different gelatin 
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concentrations are displayed in Figure 6.2(b). The corresponding MIP dynamic images using ED 

and ID are respectively shown in Figure 6.2(c) and (d). According to equation (6.1), the variations 

of CNR with respect to gelatin concentrations are plotted and analyzed as in Figure 6.2(e), 

demonstrating that the sensitivity of complex ED method is close to twice that of the ID method. 

 
 
Figure 6.2. The sensitivity to motion of complex eigen decomposition (ED) method is approximately twice that of 
intensity decorrelation (ID). (a) photograph showing the phantom with motion-particle containing reservoirs arranged 
side by side. (b) En-face OCT structural images of the reservoirs with the gelatin concentrations as shown. (c) and (d) 
En-face dynamic images using ED and ID with respect to different gelatin concentrations, respectively. (e) Descending 
curves of CNR of two dynamic imaging algorithms with increasing gelatin concentration. Scale bar: 1 mm. 
 

6.3.2 Subcellular dynamics in yeast cells are detected and quantified by ED variance analysis 

In Experiment II, the patterned phantoms made by yeast/gelatin/TiO2 mixture were used to 

visualize cell dynamics. As schematically shown in the yeast intercellular structure in Figure 6.3(a), 

the subcellular motions of yeast cells are mainly driven by mitochondrion activities [160]. Figure 

6.3(b) shows an “OCT-UW” letter pattern grooved on the gelatin/TiO2 background that was filled 

with the yeast mixture, which was contrasted through complex ED as in Figure 6.3(c). 

Corresponding to the red lines in (b) and (c), the cross-sectional structure image and dynamic 

image of the yeast/gelatin/TiO2 mixture are displayed in Figure 6.3(d) and (e). At this location, the 
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repeated B-scans were acquired and piled up as a time-dependent sequential datum. The power 

ratio (i.e. percentage ratio of static eigen values) are mapped against the time axis (vertical axis) 

as in Figure 6.3(f). By averaging across all A-lines, the curve in (g) reveals a rapid decline of the 

static component of the yeast mixture. In comparison, as marked by green lines in (b) and (c), the 

structure image, the dynamic image, the map of power ratio decay, and the averaged decay curve 

of pure gelatin/TiO2 are shown in Figure 6.4(h)-(k), respectively. As expected, for abiotic elastic 

materials like gelatin, the decline of static power ratio is approximately linear within 10 s, much 

slower than that of the yeast cells. In (g) and (k), the time-varying curves within 3 s are zoomed as 

subfigures, and exponentially fitted, respectively. However, as suggested by the poor fitting in (g) 

(i.e. R2 = 0.60), the dynamic property of yeast phantom is difficult to quantitatively characterize 

with current sampling frequency of 180 Hz. Therefore, a higher speed of 20 kHz with M-mode 

scans is used in the following subsection.  
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Figure 6.3. Imaging of patterned phantom made of yeast cells and gelatin/TiO2 (a) Intercellular diagram of a yeast cell. 
(b) Designed “OCT - UW” letter pattern filled with yeast/gelatin/TiO2 mixture. (c) En-face dynamic images of 
subcellular motion in yeast/gelatin/TiO2 mixture against the gelatin/TiO2 background. (d) and (e) Cross-sectional 
structure image and subcellular dynamic image of the yeast mixture corresponding to red lines in (b) and (c). (f) Map 
of the static power ratio against time frames (vertical axis, ~10 s duration) of each A-line (horizontal axis) within the 
sample window marked as red boxes in (d) and (e). (g) Variation curve of the line-averaged static power ratio of (f). 
(h)-(k) Structure image, dynamic image, map of static power ratio, and the averaged curve of the pure gelatin/TiO2 
phantom. In (g) and (k), the time-varying curves within 3 s are zoomed and compared between yeast and gelatin. 
However, the exponential fitting in (g) merely reaches a level of R2 = 0.60, suggesting the limitation of low sampling 
speed for the investigation of yeast dynamics. Scale bar: 500 µm. 
   

To minimize the effect from rugged yeast-cement surface, another phantom was made in 

Experiment II by directly dropping 15% yeast suspension into gelatin/TiO2 water solution before 

solidification, as shown in Figure 6.4(a), in which the red square indicates a region that was 

scanned by the OCT system and then processed through complex ED, as displayed in the dynamic 

image in Figure 6.4(b). The yellow arrows in (b) indicate a few thin-layer yeast clusters peeled off 

due to surface tension during phantom making, which still provides certain dynamic contrast 

although having been surrounded by stiff gelatin after coagulation. To avoid the confounding 
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factor from cell migration, this region was scanned 3 times with a time interval of ~1 min, all of 

which show the same distribution of yeast clusters. At the cross-section marked by a red line in 

(b), repeated M-mode scans were acquired at each A-line position and piled up into a time-

dependent sequential datum, as representatively shown in the structure of Figure 6.4(c). 

Corresponding to the regions marked in green and red in (c), the averaged static power ratios are 

plotted and exponentially fitted as in Figure 6.4(d). The fitted damping coefficients were -0.09 /s 

(R2 = 0.96) and -0.22 /s (R2 = 0.97) for gelatin/TiO2 and yeast, respectively, suggesting that the 

subcellular motions in the yeast cells substantially increase signal dynamics within a short period 

(total acquisition time of 30 ms with a sampling time interval of 50 μs).  

 
 
Figure 6.4. (a) Phantom made by adding yeast suspension into gelatin/TiO2 water solution before solidification. (b) 
En-face OCT dynamic image of the solidified phantom in the red square in (a), in which the yellow arrows indicate 
thin-layer yeast clusters peeled off due to surface tension. (c) The OCT structure image crossing the boundary between 
gelatin/TiO2 and yeast, in which two regions of interest are respectively marked by green and red squares. (d) 
Corresponding to the regions, the averaged static power ratios are plotted along the time axis, and exponentially fitted 
in green and red, respectively. The fitted damping coefficient is -0.088 /s (R2 = 0.96) for the gelatin/TiO2, and -0.216 
/s (R2 = 0.97) for the yeast. 
 

6.3.3 Quantitative evaluation of cortical cell necrosis after stroke in vivo  

In the last experiment, we analyzed the cortical cell activities from in vivo OCT datasets, in healthy 

state and under ischemic stroke. The en-face MIP structure image and the blood flow image for 

the healthy cortex are displayed in Figure 6.5 (a) and (b), respectively. At a representative cross-

section marked by red lines in (a) and (b), power ratios of each A-line sample (horizontal axis) are 

mapped against the time (vertical axis) as in Figure 6.5(c). With respect to each A-line, the 

variation curve of the static power ratio is further plotted in Figure 6.5(d), in which a black dotted 
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line denotes the averaged variation. For better visualization of cell dynamics, all cross-sections 

that are covered by vessels have been removed from analysis in (d). By applying exponential fitting, 

the averaged damping coefficient (Γ) of entire cross-section is quantified as -5.89 /s. In comparison, 

the en-face structure image, blood flow image, map of static power ratio of a representative cross-

section, and corresponding variation curve for the mouse under ischemic stroke are displayed in 

Figure 6.5 (f)-(i), respectively. The decay rate of the static power ratio in (i) appears to be much 

slower than that in (d), with an averaged damping coefficient of -3.06 /s. The histogram 

distributions of the damping coefficient of each A-line in (d) (red) and (i) (green) are displayed as 

a subfigure in (i), revealing the suppression of cell dynamics in stroke, which suggests the 

coefficient as a high-sensitive parameter to evaluate neural activities. Accordingly, the damping 

coefficients (with blood flow information removed) are mapped in Figure 6.5(e) and (j), for the 

mouse in healthy state and under ischemic stroke, respectively. The faster decay rate (lower 

coefficients) in (e) is ascribed to the active subcellular dynamics of healthy cortical cells. However, 

after occlusion of the middle cerebral artery, ischemia-leaded necrosis severely alternated the 

subcellular properties of those cells, and therefore resulted in a slower decay rate (higher 

coefficients). For the same reason, a boundary can be visualized between the healthy cortical tissue 

and the static skull as marked by red arrows in (e), which becomes less defined when the mouse 

suffered a stroke as in (j). 
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Figure 6.5. Dynamic imaging and ED variance analysis of cortical tissue in vivo for a mouse brain subject to ischemic 
injury. (a) and (b) representative en-face OCT structure image and blood flow image of a healthy cortex. (c) Map of 
the static power ratio against time (vertical axis, 2.5 ms duration) of each A-line (horizontal axis) at the cross-section 
marked by red lines in (a) and (b). (d) Variation curve of the static power ratio of each A-line in (c), in which the black 
dotted line denotes the averaged curve with an exponentially fitted damping coefficient of -5.89 /s. (e) Map of the 
damping coefficients that reveals the subcellular dynamics of healthy cortical cells. (f)-(j) representative en-face 
structure image, blood flow image, map of static power ratio of a cross-section, variation curve of the static power 
ratio, and map of the damping coefficients for the mouse under ischemic stroke. In (i), the black dotted line denotes 
the averaged variation curve with a damping coefficient of -3.06 /s. The damping coefficients of each A-line in (d) 
and (i) are displayed as two histogram distributions in the subfigure of (i) in red and green, respectively. In (e), a clear 
boundary (denoted by red arrows) is visualized between the cortical tissue and the skull. However, the boundary is 
less defined in (j). In (e) and (j), all vessels are removed for better visualization of cell activities. Scale bar: 500 µm. 
 

6.4. Discussion and Conclusion 

In this study, we have described an innovative quantitative method for the assessment of 

subcellular dynamics based on eigen decomposition of complex OCT signals. In this method, the 

differentiation between static and dynamic components is generalized as two main steps: (1) 

calculation of covariance matrix, and (2) eigen decomposition. Because all A-lines in the 3-D OCT 

dataset were piled up in the same linear scale, here the covariance matrix is equivalent to its 

corresponding correlation matrix (correlation coefficient R is calculated by the normalization of 

covariance against the intra-group standard deviations, i.e. 𝑅  𝑐𝑜𝑣𝑎𝑟 𝐴 , 𝐴 / 𝑣𝑎𝑟 𝐴

𝑣𝑎𝑟 𝐴 ). Therefore, the step (1) shares a similar concept with the well-accepted 

complex/phase decorrelation theory [161], [167]. However, because of the slow cell-induced 

signal variation relative to the high sampling speed, apart from the static components, the dynamic 
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components may also contribute to high correlation, therefore the sensitivity of directly using 

correlation coefficient can be limited. As the static structure background and the pedesis-like 

dynamics are linearly uncorrelated, in current approach, we further discriminated the two 

components through ED in step (2) and calculate the static power ratios by utilizing the eigen 

values.  

In addition, for quantitative analyses, the power ratios are exponentially fitted with the projected 

en-face damping coefficients representing the cell activities. One noticeable phenomenon is that 

the coefficients of cortical cells in Figure 6.5(e) appear to be around 20 times larger than those of 

the yeast cells in Figure 6.4(d). This discrepancy may be due to the intrinsic difference in cell types, 

in the temperatures (body temperature of 36.5° for in vivo study compared with room temperature 

of 20° for in vitro study), or even in the cellular motion involvement (e.g. cell migration or 

reorganization [160], [168]). Also, the stiffness of  intercellular media is known to hinder cell 

migration in the viscoelastic microenvironment, which may compound the observation with 

possible mechanical origins [169]. However, the migration or reorganization of cells typically 

cover long timescales [146], [160], [168], way above current sampling interval of 50 µs and total 

duration of several milliseconds [146]. Other factors may nuance the evaluation of different 

samples but should be negligible when imaging the same sample in different pathological 

conditions. In future applications, the experimental conditions need to be carefully monitored and 

controlled.  

Another point to notice is that all samples in the experiments were clustered and processed on 

a line-by-line basis with no sacrifice of lateral resolution, which is reasonable especially for the 

spectral domain OCT where the depth information (whole A-line) is acquired at the same time. 

This is also feasible when studying the responses of cortical cells in vivo that usually cover multiple 
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layers in the cerebral cortex. Further systematic explorations of the layer-dependent responses can 

be achieved through layer segmentation of the OCT datasets [170] as a pre-processing step.  

In conclusion, we proposed an effective ED variance analysis toolkit to achieve dynamic 

imaging and quantification of subcellular motion. Validation work was successfully performed on 

various patterned yeasts, gelatin/TiO2 and intralipid phantoms, suggesting high potential of the 

toolkit for pharmaceutical engineering. Moreover, the proposed method was employed to indicate 

cell activities in the mouse cerebral cortex in situ and in vivo, in normal state and during ischemia 

stroke. The information of cortical cell metabolism and cerebral blood flow are extracted from the 

same well co-registered OCT dataset at one time, which may be of great value in future 

neurovascular coupling studies. 
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